
Matching Cognitive Characteristics of Actors
and Tasks

S.J. Overbeek1, P. van Bommel2, H.A. (Erik) Proper2, and D.B.B. Rijsenbrij2

1 e-office B.V., Duwboot 20, 3991 CD Houten, The Netherlands, EU
Sietse.Overbeek@e-office.com

2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

{P.vanBommel,E.Proper,D.Rijsenbrij}@cs.ru.nl

Abstract. Acquisition, application and testing of knowledge by actors
trying to fulfill knowledge intensive tasks is becoming increasingly impor-
tant for organizations due to trends such as globalization, the emergence
of virtual organizations and growing product complexity. An actor’s man-
agement of basic cognitive functions, however, is at stake because of this
increase in the need to acquire, apply and test knowledge during daily
work. This paper specifically focusses on matchmaking between the cog-
nitive characteristics supplied by an actor and the cognitive characteris-
tics required to fulfill a certain knowledge intensive task. This is based on
a categorization and characterization of actors and knowledge intensive
tasks. A framework for a cognitive matchmaker system is introduced to
compute actual match values and to be able to reason about the suit-
ability of a specific actor to fulfill a task of a certain type.

1 Introduction

The importance of an actor’s abilities to acquire, apply and test already applied
knowledge increases due to e.g. growing product complexity, the move toward
globalization, the emergence of virtual organizations and the increase in focus on
customer orientation [1]. A knowledge intensive task is a task for which acqui-
sition, application or testing of knowledge is necessary in order to successfully
fulfill the task. When the pressure to acquire, apply and test more knowledge
increases, actors struggle to manage their basic cognitive functions like e.g. the
willpower to fulfill a task or maintaining awareness of the requirements to fulfill
a task. These cognitive functions are also referred to as volition and sentience
respectively in cognitive literature [2,3]. Difficulties to control basic cognitive
functions influences practice and potentially threatens the success of task ful-
fillment [4]. Research in cognitive psychology has demonstrated that individual
knowledge processing is negatively influenced when experiencing an overload of
knowledge that needs to be processed. A burden of knowledge processing events
may cause actors to underrate the rate of events [5] and to be overconfident [6].

In [7] we have discussed several types of knowledge intensive tasks, each char-
acterized by their characteristics. These task types consist of an acquisition task,

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 371–380, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

372 S.J. Overbeek et al.

a synthesis task and a testing task. An acquisition task is related with the elic-
itation of knowledge. A synthesis task is related with the actual utilization of
the acquired knowledge. Lastly, a testing task is related with the identification
and application of knowledge in practice inducing an improvement of the spe-
cific knowledge applied. The characteristics belonging to each task type indicate
the cognitive requirements necessary for an actor to successfully fulfill an in-
stance of a specific task type. Based on this earlier work, the research reported
in this paper is specifically concerned with the matching of cognitive character-
istics required to fulfill a certain task instance with the cognitive characteristics
actually possessed by an actor. The ambition of this paper, however, is not to
come up with a tool that will be concerned with cognitive matchmaking. Instead,
the emphasis is on developing a framework which includes the aspects of such a
matchmaking process and to acquire insight in how these aspects can be tackled.

2 Cognitive Actor Settings

Before elaborating on matching cognitive characteristics possessed by an actor
with the cognitive characteristics required when fulfilling a task instance, a char-
acterization of possible actor types is needed.

2.1 Actor Types

Actor types may draw from a pool of basic cognitive characteristics an actor
might possess, such as sentience, volition and causability [8]. No one actor type
necessarily has all of these characteristics and some have more than others. Using
a series of linguistic diagnostics, Dowty [8] has shown that each of these char-
acteristics can be isolated from the others and so should be treated as distinct.
The following characteristics can thus be distinguished that can be utilized to
generate cognitive settings of possible different actor types.

The volition characteristic is concerned with an actor’s willpower to fulfill
some knowledge intensive task instance. Sentience expresses that an actor has
complete awareness of required knowledge to fulfill some task instance. The
causability characteristic expresses that an actor has the ability to exert an
influence on state changes of knowledge involved during fulfillment of some task
instance. During fulfillment of certain knowledge intensive task instances an
actor should be able to improve its own cognitive abilities. This is indicated by
the improvability characteristic. The independency characteristic is necessary to
be able to determine if an actor is able to fulfill some task instance on its own.

Having determined possible cognitive characteristics an actor may have it is
now appropriate to distinguish several actor types. The combination of an actor
type with the cognitive characteristics belonging to a type forms a cognitive
actor setting. This characterization is shown in table 1. The five distinguished
actor types are based on a classification of knowledge worker types [9] and on
linguistic literature [2]. The set of actor types can be represented as:

{experiencer, collaborator, expert, integrator, transactor} ⊆ AT (1)

Matching Cognitive Characteristics of Actors and Tasks 373

Table 1. Cognitive actor settings characterized

CC

AT Volition Sentience Causability Improvability Independency

Experiencer – × – – –
Collaborator × – × × –
Expert × × × × ×
Integrator × – × – –
Transactor × × – – ×

The set of cognitive characteristics can be represented as:

{volition, sentience, causability, improvability, independency} ⊆ CC (2)

An important remark to make here is that the actor types as well as the cog-
nitive characteristics are not limited to five actor types and five cognitive char-
acteristics. However, in this paper we restrict ourselves to the above mutually
independent cognitive actor settings. The actor types as shown in table 1 can
now be introduced.

The experiencer actor type has the sentience characteristic only. An experi-
encer is thus only aware of all the knowledge requirements to fulfill some task
instance. Consider for example the following sentence: John thoroughly reads an
article about balanced scorecards before joining a meeting about balanced score-
cards. This indicates that John, as an experiencer, probably understands that
reading an article about balanced scorecards is enough to successfully prepare
himself for a meeting about that topic. The collaborator actor type possesses
the volition, causability and improvability characteristics. A collaborator has
the ability to exert an influence on state changes of knowledge involved during
fulfillment of a task instance. During fulfillment of a knowledge intensive task
instance a collaborator is also able to improve its own cognitive abilities. How-
ever, a collaborator does not have complete awareness of all required knowledge
to fulfill a task instance and requires others to fulfill a task instance. Consider
the following example: John works at a hospital and requires knowledge about a
patient’s history. Therefore, he acquires the most recent patient log from a col-
league. This indicates that John, as a collaborator, understands that in order to
acquire knowledge about a patient’s history he must collaborate with another
actor. After that John is able to update the patient’s log with recent changes.
An expert possesses all characteristics depicted in table 1. Suppose that John
is an assistant professor working at a university and he would like to solve a
difficult mathematical problem when developing a theory. He then uses his own
knowledge about mathematics to solve the problem. John is also able to combine
and modify his own knowledge while solving the problem and he can also learn
from that. An integrator is able to fulfill a knowledge intensive task instance
by working together and is able to initiate state changes of knowledge involved
during task instance fulfillment. An integrator primarily wishes to acquire and
apply knowledge of the highest possible quality. An engineer contributing to the
construction of a flood barrier is an example of an integrator. Volition, sentience

374 S.J. Overbeek et al.

and independency are the characteristics belonging to the transactor actor type.
A transactor can fulfill a task instance without collaborating with others and is
not required to cause modifications in the knowledge acquired and applied during
task fulfillment. A customer support employee working at a software company
is an example of a transactor.

A specific instantiation of an actor type is expressed by AType : AC → AT ,
where AC is a set of actor instances. The example AType(a) = experiencer for
instance expresses that an actor a can be classified as an experiencer. We can
view the actor that is specifically fulfilling a task instance i ∈ TI as a function
Fulfillment : AC → ℘(TI). Here, TI is a set of task instances. An actor a that fulfills
a task instance i can be expressed as Fulfillment(a) = {i}. A specific instantiation
of a task type is expressed by TType : TI → TT , where TT is a set of task types
that can be instantiated by a specific task instance. The expression TType(i) =
acquisition can be used to assert that a task instance i is characterized as an
acquisition task.

3 Cognitive Matchmaker System

In this section a framework for a cognitive matchmaker system is introduced
that is able to compute a match between cognitive characteristics required for
a specific task type and cognitive characteristics that are provided by a specific
actor type. As a running example, we use the matchmaker system to match the
cognitive characteristics offered by the transactor actor type with the required
cognitive characteristics of a synthesis task. Figure 1 shows the architecture of
the system on a conceptual level, which is translated into the formalisms through-
out this section. In section 2, a function ACharj(a) = C indicated the cognitive

Fig. 1. Cognitive matchmaker system

characteristics that characterized an actor instance of a certain type, where j is a
task type belonging to the set of task types TT , a is an actor instance belonging
to the set of actor instances AC and C is a set of cognitive characteristics that
is a subset of or equal to CC. Recall from section 2 that the corresponding actor
type can be found by using the actor type function: AType(a) = j. With this in
mind, a supply function can be modeled that returns a value expressing to what
extent an actor type offers a certain cognitive characteristic:

Supply : AT → (CC → CRN) (3)

Matching Cognitive Characteristics of Actors and Tasks 375

The expression Supplytransactor(s) = 10 shows that an actor characterized by the
transactor type offers the sentience characteristic and is at least capable to per-
form this characteristic at level 10. Note that for readability reasons the word
‘sentience’ has been abbreviated to the letter ‘s’. The resulting value ‘10’ is part
of a characteristic rank domain CRN which contains integer values within the
range [0, 10]. The hard values as part of a domain of values can be found using
the following function:

Numerical : ℘(RN) → R (4)

Here, the set RN contains rank values and CRN ⊆ RN . Formally, the character-
istic rank domain includes the following hard values: Numerical(CRN) = [0, 10]. A
value of 0 means that an actor is not able to offer a certain characteristic, a value
of 5 means that an actor is able to offer a characteristic at an average level and
a value of 10 means that an actor is able to offer a characteristic at the highest
level. So, in the case of the example, the transactor is able to offer the sentience
characteristic at the highest level.

Besides modeling a supply function, a demand function is needed that returns
a value expressing to what extent a cognitive characteristic is required for a
certain task type:

Demand : TT → (CC → CRN) (5)

The expression Demandsynthesis(s) = 10 indicates that a sentience characteristic is
required at the highest level in order to fulfill a synthesis task. The supply and
demand functions can now be utilized to compute the characteristic match.

3.1 Characteristic Match

In this section, a characteristic match function is defined to compare the resulting
values from the supply and demand functions. This comparison provides insight
in the way supply and demand of cognitive characteristics are matched with each
other. In order to model a characteristic match function, an actor type as well
as a task type are required as input, together with a cognitive characteristic:

CharMatch : AT × TT → (CC → MRN) (6)

As can be seen in figure 1, the characteristic match function returns a value from
the match rank domain, where MRN ⊆ RN . The match rank domain includes
the following values: Numerical(MRN) = [0, 10].

To compute the actual characteristic match value, a proximity function is
necessary to be able to define the characteristic match function. This proximity
function computes the proximity of the level an actor offers a certain cognitive
characteristic related to the level that is required in order to fulfill a task of a
certain type. The values that are used as input for the proximity function are
part of the characteristic rank domain. The resulting proximity value is then a
value that is part of the match rank domain:

Proximity : CRN × CRN → MRN (7)

376 S.J. Overbeek et al.

A normalization function can be introduced that calculates the numerical
proximity of demand and supply when a cognitive characteristic is concerned:

Normalize : R → [0, 1] (8)

The normalization function can be defined by using the supply and demand
functions and two additional constants min and max:

Normalize(Supplyi(c) − Demandj(c)) � Supplyi(c) − Demandj(c) + max − min

2 · (max − min)
(9)

Here, i is an actor type of the set AT , j is a task type of the set TT and c
is a cognitive characteristic of the set CC. The values of the constants min and
max can be determined by interpreting the minimum and the maximum values
of a specific ranking domain. So, in the case of the running example min = 0
and max = 10 when the characteristic rank domain is concerned. The minimum
value that can be returned by the normalization function is 0. This occurs if
there is absolutely no supply (i.e. an incapable actor is concerned) but there is
a maximum demand of a certain cognitive characteristic in order to fulfill a task
of a certain type. This situation is depicted below:

Normalize(0 − 10) =
0 − 10 + max − min

2 · (max − min)
= 0

In the case of an overqualified actor that is more capable to perform a cognitive
characteristic than is required, the normalization function returns 1:

Normalize(10 − 0) =
10 − 0 + max − min

2 · (max − min)
= 1

This means that the normalization function normalizes the proximity of supply
and demand between 0 and 1. Using the normalization function, the proximity
function can now be defined as follows:

Proximity(Supplyi(c), Demandj(c)) � Normalize(Supplyi(c) − Demandj(c)) (10)

For the running example the proximity function as defined above results in:

Proximity(10, 10) = Normalize(10 − 10) = 0.5

Now with the introduction of a proximity function the characteristic match
can be defined by computing the proximity of demand and supply in the context
of a given characteristic:

CharMatch(i, j) � λc∈CC · Proximity(Supplyi(c), Demandj(c)) (11)

Recall from section 3 that an actor of the transactor type is able to perform
the sentience characteristic at level 10, which equals the level to what extent a
sentience characteristic should be offered for a synthesis task type. In the case
of our example the characteristic match results in:

CharMatch(transactor, synthesis) =

λs∈CC · Proximity(Supplytransactor(s), Demandsynthesis(s)) =

Proximity(10, 10) = 0.5

Matching Cognitive Characteristics of Actors and Tasks 377

This example shows that for the transactor / synthesis task combination the
eventual proximity value is 0.5. However, this proximity value is only related
to the demand and supply of one specific cognitive characteristic. To compute
a total match of the required cognitive characteristics for a task type and the
characteristics offered, a weighed suitability match can now be introduced.

3.2 Weighed Suitability Match

The cognitive matchmaker system is completed by introducing a weighed suit-
ability match, as is shown in the rightmost part of figure 1:

Match : AT × TT → SRN (12)

This function returns a value from the suitability rank domain, where SRN ⊆
RN . The suitability rank domain includes the following values: Numerical(SRN) =
[0, 10]. This means that an actor of a certain type can have suitability levels
ranging from 0 to 10. To determine the suitability of the transactor fulfilling the
synthesis task, the calculated proximity of demand and supply of a cognitive
characteristic c ∈ CC can be weighed:

Weigh : (CC → MRN) → (CC → SRN) (13)

To define the weigh function several other functions are necessary, though. As
can be seen in figure 1 the weigh function uses the input from the characteristic
match function and returns a value from the suitability rank domain as output.
To construct the weigh function, a function is needed that has a match rank
metric (i.e. the proximity value) as its input and a suitability rank metric as its
output:

Metric : MRN → SRN (14)
For instance, Metric(0.5) = 0.5 shows that the value 0.5, which is the proximity
value, equals the value 0.5 which is a suitability rank metric. A characteristic
weigh function is needed to actually weigh the importance of a certain cognitive
characteristic to fulfill a task of a certain type:

CharWeigh : CC → SRN (15)

So, CharWeigh(s) = 1.5 means that a weigh factor of 1.5 is given to indicate the
importance to offer the sentience cognitive characteristic (for a certain task).
Finally, the ⊗ operator is also needed to define a definite weigh function:

⊗ : SRN × SRN → SRN (16)

The ⊗ operator is necessary to multiply the metric value with the characteristic
weigh value. Multiplying the values mentioned above results in: 0.5 ⊗ 1.5 = 0.75.
The weigh function can now be defined as:

Weigh(c, CharMatch(i, j)) � λc∈CC · Metric(CharMatch(i, j)) ⊗ CharWeigh(c) (17)

Here, c ∈ CC, i ∈ AT and j ∈ TT . Continuing the running example, we would like
to calculate the suitability of the transactor that is fulfilling a synthesis task.
Considering the sentience characteristic only, this can be computed as follows:

Weigh(s, CharMatch(transactor, synthesis)) =

λs∈CC · Metric(0.5) ⊗ CharWeigh(s) =

0.5 ⊗ 1.5 = 0.75

378 S.J. Overbeek et al.

In order to calculate the suitability match of the transactor related to the syn-
thesis task, it is mandatory to determine the cognitive characteristics supplied
by the actor and demanded by the task. The transactor actor type supplies
the volition, sentience and independency characteristics as is shown in table 1.
The synthesis task type can be characterized by the applicability and correct-
ness characteristics [7]. These characteristics are explained as follows. An actor
should provide the applicability characteristic to be able to apply knowledge
during task fulfillment and to make sure that the applied knowledge has a useful
effect on successfully completing the task. An actor should provide the correct-
ness characteristic to be able to judge the usefulness of applied knowledge in a
task and to be sure that applied knowledge meets its requirements.

The set CC contains the following characteristics in the case of the running
example: {volition, sentience, independency, applicability, correctness} ⊆ CC.
For all these characteristics a weigh value needs to be determined as in the ex-
ample expression of function 17. This is necessary to compute a final suitability
match resulting in one suitability rank value. Assume that the actual character-
istic weigh values (each assigned to one cognitive characteristic as part of the set
CC) are: 2, 1.5, 0.5, 3 and 3. Note that these characteristic weigh values always
summate to one and the same total value. In the case of our example the char-
acteristic weigh values summate to 10. Thus, no matter how the weigh values
are divided across the cognitive characteristics, they should always summate to
a total of 10.

The results of the weighed characteristic matches have to be summated to
generate a single suitability match value. To summate these values a ⊕ operator
is required:

⊕ : SRN × SRN → SRN (18)

Now the final match function can be defined using the aforementioned functions:

Match(i, j) �
⊕

c∈CC
Weigh(c, CharMatch(i, j)) (19)

In the match function i ∈ AT , c ∈ CC and j ∈ TT . For the running example this
means that the suitability match value of the transactor fulfilling a task instance
of the synthesis type is computed as follows:

Match(transactor, synthesis) = 1 ⊕ 0.75 ⊕ 0.5 ⊕ 0.75 ⊕ 0.75 = 3.75

As a result of the suitability match it can be concluded that the suitability of
an actor characterized by the transactor type fulfilling a task instance of the
synthesis type is 3.75. Remember that the lowest suitability value is 0 and the
highest suitability value that can be reached is 10. The lowest value is reached
if the supply of every characteristic is 0 and the demand of every characteristic
is 10. The highest value is reached in the case of complete overqualification, i.e.
if the supply of every characteristic is 10 and the demand of every characteristic
is 0. At this point a decision can be made whether or not the specific actor
is suitable enough to fulfill this task or if another actor is present who should
be more suitable, i.e. has a better suitability match value. The suitability of

Matching Cognitive Characteristics of Actors and Tasks 379

Metric

CharWeigh

Weigh

ActorType
(name)

Match

Supply

Proximity

Cognitive
Characteristic

(name)

Demand

TaskType
(name)

MatchRank

CharMatch

SuitabilityRank

Characteristic
Rank

Rank

(RealNumber)

{‘acquisition’,‘synthesis’,‘testing’}

 {‘experiencer’,
 ‘collaborator’,

 ‘expert’,
 ‘integrator’,
 ‘transactor’}

Suitability
Rank

Domain

Numerical

=

Ranking
Domain

Value
(number)

[0,1]
Normalize

Fig. 2. Object-Role Modeling (ORM) model of the cognitive matchmaker system

an actor to fulfill a certain task is best if the resulting suitability value is 5.
Underqualification as well as overqualification are both considered undesirable.

A certainty function can now be introduced to make sure how certain it is
that an actor is suitable to fulfill a task:

μ : R → [0, 1] (20)

A linear certainty function can be defined as follows:

μ(u) �
{ 2

min+max · u min ≤ u ≤ min+max
2

−2
min+max

· u + 2 min+max
2 ≤ u ≤ max

(21)

For the running example, where min = 0 and max = 10, the following expression
shows that the certainty that the transactor is suitable to fulfill the synthesis
task is 0.75:

μ(3.75) =
2

0 + 10
· 3.75 = 0.75

This can be interpreted as being 75% sure that the transactor is suitable enough
to fulfill the synthesis task. It might be a good choice to let the transactor
fulfill the synthesis task, unless an available actor characterized by another type
provides a better match. In order to also have a graphical representation of

380 S.J. Overbeek et al.

the discussed definitions throughout section 3, an Object-Role Modeling (ORM)
model is presented in figure 2. For details on Object-Role Modeling, see e.g. [10].

4 Conclusion

This paper describes a categorization and characterization of actors that are able
to fulfill knowledge intensive tasks, illustrated by cognitive characteristics indi-
cating actor abilities for task fulfillment. Proceeding from these characteristics
a running example, in which a match is determined of an actor characterized by
the transactor type wishing to fulfill a synthesis task, shows how the theory can
be materialized.

References

1. Staab, S., Studer, R., Schnurr, H.P., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16(1), 26–34 (2001)

2. Kako, E.: Thematic role properties of subjects and objects. Cognition 101(1), 1–42
(2006)

3. Weir, C.R., Nebeker, J., Bret, L., Campo, R., Drews, F., LeBar, B.: A cognitive task
analysis of information management strategies in a computerized provider order
entry environment. Journal of the American Medical Informatics Association 14(1),
65–75 (2007)

4. Meiran, N.: Modeling cognitive control in task-switching. Psychological Re-
search 63(3–4), 234–249 (2000)

5. Hertwig, R., Barron, G., Weber, E., Erev, I.: The role of information sampling in
risky choice. In: Fiedler, K., Juslin, P. (eds.) Information Sampling and Adaptive
Cognition, pp. 72–91. Cambridge University Press, New York, NY, USA (2006)

6. Koehler, D.: Explanation, imagination, and confidence in judgment. Psychological
Bulletin 110(3), 499–519 (1991)

7. Overbeek, S., van Bommel, P., Proper, H., Rijsenbrij, D.: Characterizing knowledge
intensive tasks indicating cognitive requirements - Scenarios in methods for specific
tasks. In: Ralyt, J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Proceedings of
the IFIP TC8/WG8.1 Working Conference on Situational Method Engineering:
Fundamentals and Experiences, Geneva, Switzerland. IFIP, vol. 244, pp. 100–114.
Springer, Boston, USA (2007)

8. Dowty, D.: Thematic proto-roles and argument selection. Language 67(3), 547–619
(1991)

9. Davenport, T.: Thinking for a Living – How to get Better Performances and Results
from Knowledge Workers. Harvard Business School Press, Boston, MA, USA (2005)

10. Halpin, T.: Information Modeling and Relational Databases, from Conceptual
Analysis to Logical Design. Morgan Kaufmann, San Mateo, CA, USA (2001)

	Matching Cognitive Characteristics of Actors and Tasks
	Introduction
	Cognitive Actor Settings
	Actor Types

	Cognitive Matchmaker System
	Characteristic Match
	Weighed Suitability Match

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

