
Experience with ALMA

Nico Lassing (a), Daan Rijsenbrij (b) and Hans van Vliet (c)∗

(a) Accenture, Amsterdam, The Netherlands
(b) Cap Gemini Ernst & Young, Utrecht, The Netherlands

(c) Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands

Abstract

We discuss our experiences in using ALMA, our method
for Architecture-Level Modifiability Analysis. Like many
other methods for software architecture analysis, such as
SAAM and ATAM, our method is scenario-based. We found
that the scenario elicitation process is tricky, and depends
on the goal set for the analysis. Also, our experience in ap-
plying ALMA to business information systems indicates that
it is important to also model the environment of the system.
Data from a longitudinal study in which we collected infor-
mation on the actual evolution of a system whose modifia-
bility we analyzed earlier, provides further valuable insights
into the applicability of ALMA, and points at some general
limitations of this type of analysis.

1. Introduction

This paper is about ALMA, a method for Architecture-
Level Modifiability Analysis (Bengtsson et al., 2000). Like
many other methods for software architecture analysis, such
as SAAM (Kazman et al., 1996) and ATAM (Kazman et al.,
1998), our method is scenario-based, which means that it
uses concrete scenarios to assess the quality of a system
based on its software architecture. At some point in the
analysis, these scenarios are elicited from the stakeholders,
and the software architecture is analyzed to determine their
impact. Since we are concerned with assessing the mod-
ifiability of the architecture, our scenarios describe future
uses of the system, uses not yet accounted for in the re-
quirements. We term thesechange scenarios, as opposed to
operational scenarios which do refer to the requirements.

The remainder of the paper is divided into three sections.
Section 2 gives an overview of ALMA following the format
of the SARA Report. ALMA distinguishes several goals for
modifiability analysis. The emphasis of the research carried
∗Corresponding author. Tel (31) 20 444 7768; fax (31) 20 444 7728

E-mail addresses: nico.lassing@accenture.com,
daan.rijsenbrij@capgemini.nl, hans@cs.vu.nl

out at the Vrije Universiteit has been on risk analysis. Sec-
tion 3 discusses our experiences with this type of modifia-
bility analysis. Section 4 summarizes our experiences.

2. About ALMA

Name: ALMA (Architecture-Level Modifiability Analy-
sis).

Context: Evaluation. ALMA supports part of the inception
phase, viz. selecting the goal (risk assessment, maintenance
prediction, comparison of architectures), but its main focus
is on the actual review. The techniques applied during the
actual review depend on the goal chosen.

Purpose: Assessing modifiability.

Input Architecture description.

Output Identification of changes that are difficult to accom-
plish, or an estimate of maintenance costs, or a comparison
of architectures w.r.t. maintenance costs or risks.

Steps:ALMA has the following steps:

1. Set goal: determine the aim of the analysis (risk as-
sessment, maintenance cost prediction, or software ar-
chitecture comparison).

2. Describe the software architecture(s).

3. Elicit change scenarios.

4. Evaluate change scenarios.

5. Interpret results.

Roles: architect(s), one or two assessors, stakeholders.

Estimates: n.a.

References:The overall method is described in (Bengtsson
et al., 2000). Experiences with the maintenance prediction
‘version’ are collected in (Bengtsson, 2002). Experiences
with the risk assessment ‘version’ are collected in (Lassing,
2002). See also (Lassing et al., 1999), (Lassing et al., 2001),
(Lassing et al., 2002a), (Lassing et al., 2002b).

1



Tools: none.

Alternatives: SAAM, ATAM, FAAM (aimed at supporting
repeated assessments; more emphasis on process aspects of
the assessment; see (Dolan, 2001))

3. Experiences

3.1. Viewpoints on Modifiability

A software architecture description usually consists of
a number of views, where a view is a representation of a
system from a certain perspective. At the software architec-
ture level modifiability has to do with separation of func-
tionality and dependencies, i.e.how do we distribute the
functionality over components?andhow are these compo-
nents related?Allocation of functionality determines which
components have to be adapted to realize certain changes
and dependencies determine how changes to a component
affect other components. In an architectural description in
which modifiability is addressed these decisions should be
made explicit. These decisions are generally adequately ad-
dressed in existing view models (such as the logical and
development views in (Kruchten, 1995)).

The aforementioned questions focus on the system’s in-
ternals. For business information systems it is not sufficient
to study only the internals of the system. Such systems are
rarely isolated; they are often part of a larger suite of sys-
tems. At the system’s level questions similar to the ones at
the component level recur:how do we distribute function-
ality over systems?andwhat are the dependencies between
these systems?. Therefore, we split the description of a sys-
tem’s software architecture into two parts: (1) theexternal
architecture: the software architecture at the systems level,
and (2) theinternal architecture: the software architecture
of the internals of the system. The two viewpoints for the
external architecture are:

• thecontext viewpoint: an overview of the system and
the systems in its environment with which it commu-
nicates, and

• the technical infrastructure viewpoint : an overview
of the dependencies of the system on elements of the
technical infrastructure.

Viewpoints that depict the external architecture are often not
explicitly mentioned and dealt with in architecture assess-
ment methods. For instance, a relevant issue at this level is:
who are theownersof the components? Changes involving
different owners generally pose more risks; see also (Lass-
ing et al., 2001).

3.2. Scenario Elicitation

In our experience, the change scenario elicitation pro-
cess is tricky. The type of change scenarios we are inter-
ested in depends on the goal of our analysis. If our goal is
to predict the future maintenance cost of the system, we are
interested in identifying change scenarios that are likely to
occur during the operational life of the system. If our goal
is to identify the risks of the architectural choices made,
we are interested in scenarios which are particularly diffi-
cult to accomplish. How then do we know we have elicited
the right scenarios? How do we know we have identified
enough scenarios? And, since the system we are investi-
gating hasn’t necessarily been implemented yet, how do we
determine the impact of these changes on the system?

In our research, we are interested in identifying architec-
tural risks. We are thus interested incomplexchange scenar-
ios, scenarios describing changes that are particularly diffi-
cult to accomplish. To help structuring the scenario elicita-
tion process, we use a framework with categories of change
scenarios which we have found to be complex at the archi-
tecture level. This framework is used to classify change sce-
narios as well as to probe stakeholders to formulate change
scenarios. In this framework, we distinguish the following
categories of complex changes:

• Changes that involve different system owners. A sys-
tem owner is an organizational unit financially respon-
sible for the development and management of a sys-
tem, or simply put the entity that has to pay for adapta-
tions to the system. Changes are more complex if dif-
ferent owners are involved. Not only because of the ad-
ditional coordination between parties, but also because
all owners involved have to be persuaded to implement
the necessary changes. We make a further distinction
between changes initiated by the owner of the system
under analysis, and changes initiated by others but re-
quire the system under investigation to be adapted.

• Changes that affect the architecture. These concern
changes that affect the architecture, as opposed to
changes affecting individual components only. A
change affects the architecture if it results in the ad-
dition or deletion of one or more components or con-
nectors, or the semantics of one or more components
or connectors changes. Overhauling the architecture is
risky.

• Changes that introduce version conflicts. Finally,
changes are considered complex if they result in the
presence of different versions of some architectural el-
ement. Different versions of an architectural element
may introduce a number of difficulties. Eventually,
this may require changes to elements that were initially
unaffected by the change.

2



In (Lassing et al., 2002b), we discuss the validity of this
framework; see also the next subsection.

3.3. Findings from Longitudinal Study

In 1999, we analyzed the modifiability of Sagitta
2000/SD, a large business information system being devel-
oped on behalf of Dutch Customs. We asked stakeholders
to bring forward possible changes to the system, and next
investigated how these changes would affect the software
architecture. Since then, the system has been implemented
and used, and actual modifications have been proposed and
realized. Two years later, we revisited the Dutch Tax and
Customs Administration, collected information on the ac-
tual evolution of the system, and compared this with the
initial set of anticipated changes.

The input to this validation study consists of the change
requests that were submitted since our initial study. During
this period 117 CRs were submitted, which were stored in a
reporting tool together with an analysis of their effort. Ac-
cepted CRs are incorporated in one of the system releases.
It should be noted that these CRs are not the only source
of changes realized; the releases also include changes that
result from the planned evolution of the system and adap-
tations to the technical environment. Changes of the for-
mer type are not documented individually and changes of
the latter type are documented in another way. So we only
consider scenarios that relate to changes with a functional
flavor.

The 117 CRs can be classified as follows:

• 61 CRS represent implementation bugs.

• 28 CRs concern the addition of new functionality be-
cause of changed circumstances.

• 6 CRs concern the addition of new functionality be-
cause these functions were not identified yet in the ini-
tial requirements analysis phase.

• 22 CRs concern errors in the initial requirements.

Of interest for our analysis are the 56 CRs from the latter
three categories. In this analysis, we asked ourselves two
questions: (1) were we able topredict complex changes,
and (2) were we able to predictcomplexchanges?

The short answer to the first question is: we missed quite
a few. The two largest categories concern requirements that
were initially not identified, and new functionality which
incurred the addition of one or a few components. One CR
was identified during the initial analysis, classified as not
complex, but when it got actually implemented turned out to
have a more dramatic impact; due to dependencies between
components, the change required the structure of the system
to be adapted. We had not identified these ripple effects in

our earlier analysis. This experience corroborates findings
reported on in (Lindvall and Sandahl, 1998) and (Lindvall
and Runesson, 1998). The effect of one CR was not visible
in the viewpoints we considered adequate for modifiability
(see section 3.1 and (Lassing et al., 2001). Sagitta 2000/SD
is based on the principle of one user per tax declaration.
This CR asked to change the system such that large declara-
tions can be processed by several staff members. The views
of the system’s architecture do not show this. Nevertheless,
this is apparently an important architectural decision related
to modifiability. We could of course extend the views with
narrative text indicating the principle of one user per decla-
ration, but how does one decide that this information is that
relevant?

CRs classified as not complex by our method, but classi-
fied as complex by the expert we consulted, generally con-
cern changes to complex components. This complexity can
be functional – i.e. it concerns a component encapsulating
complex domain functionality, and adapting such compo-
nents requires the input of a domain expert, or the complex-
ity is technical, and then it needs to be carried out by an
experienced developer.

This study suggests several improvements to ALMA:

• A total of 28 CRs issued during the analysis period
concern cases where the requirements were not en-
tirely correct to begin with. Although this may be the
result of the particular development process followed
for Sagitta 2000/SD, we expect this issue to occur in
the life cycle of other systems as well. Apparently,
we have been a bit optimistic in our change scenario
elicitation in assuming the initial requirements to be
correct. This optimism is shared by other software ar-
chitecture analysis methods; none of them addresses
this issue explicitly. The architecture analysis should
improve if we explicitly challenge the requirements we
start with.

• Adding a few components to and deleting a few com-
ponents from the system had better not be classi-
fied as changes to the system’s internal architecture.
This predicate should be reserved for ‘bigger’ changes,
changes that affect the fundamental organization of the
system.

The study also hints at a number of fundamental limitations
of this type of analysis:

• Fundamental modifiability-related decisions need not
be visible in the architecture descriptions available.
Though we may improve our guidelines as to the doc-
umentation to be included in our viewpoints, they
will never be complete, and the involvement of expert
stakeholders remains important.

3



• We did not predict a number of changes. They may
have been overlooked by stakeholders during scenario
elicitation. Our scenario elicitation process in particu-
lar involved fewer stakeholders from the user side than
would have been desirable. On the other hand, the ac-
tual evolution of a system remains, to a large extent, an
unpredictable process.

• The complexity of a number of CRs is caused by the
fact that they concern complex components. Even if
we could measure the complexity of individual com-
ponents at the architecture level, we might not be able
to reduce this complexity. Some components are in-
herently complex.

A more elaborate analysis of the results from this longitudi-
nal study can be found in (Lassing et al., 2002b).

4. Conclusions

Our experience with applying ALMA to a variety of sys-
tems can be summarized as follows:

• A business information system is rarely isolated. To
assess the modifiability of such a system, we need
views which depict that system as a component within
a larger suite of systems.

• The stopping criterion for scenario elicitation is diffi-
cult. We have developed a framework with categories
of change scenarios to help structure the elicitation
process. This framework is helpful, but not a panacea.

• Architecture-level modifiability analysis considerably
improves if we explicitly challenge the initial require-
ments.

References

Bengtsson, P. (2002). Architecture-Level Modifiability
Analysis. PhD thesis, Blekinge Institute of Technology,
Sweden.

Bengtsson, P., Lassing, N., Bosch, J., and van Vliet, H.
(2000). Analyzing software architectures for modifiabil-
ity. Technical Report HK-R-RES–00/11-SE, Högskolan
Karlskrona/Ronneby.

Dolan, T. J. (2001). Architecture Assessment of
Information-System Families. PhD thesis, Technische
Universiteit Eindhoven, The Netherlands.

Kazman, R., Abowd, G., Bass, L., and Clements, P. (1996).
Scenario-Based analysis of software architecture.IEEE
Software, 13(6):47–56.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lip-
son, H., and Carriere, J. (1998). The architecture tradeoff
analysis method. InProceedings of the 4th International
Conference on Engineering of Complex Computer Sys-
tems (ICECCS’98), pages 68–78, Montery, CA. IEEE CS
Press.

Kruchten, P. B. (1995). The 4+1 view model of architecture.
IEEE Software, 12(6):42–50.

Lassing, N. (2002).Architecture-Level Modifiability Anal-
ysis. PhD thesis, Vrije Universiteit, Amsterdam, The
Netherlands.

Lassing, N., Bengtsson, P., van Vliet, H., and Bosch, J.
(2002a). Experiences with software architecture analy-
sis of modifiability. Journal of Systems and Software,
61(1):47–57.

Lassing, N., Rijsenbrij, D., and van Vliet, H. (1999). To-
wards a broader view on software architecture analysis
of flexibility. In Proceedings of the 6th Asia-Pacific Soft-
ware Engineering Conference ’99 (APSEC’99), pages
238–245, Los Alamitos, CA. IEEE CS Press.

Lassing, N., Rijsenbrij, D., and van Vliet, H. (2001).
Viewpoints on modifiability. International Journal
on Software Engineering and Knowledge Engineering,
11(4):453–478.

Lassing, N., Rijsenbrij, D., and van Vliet, H. (2002b). How
ell can we predict changes at architecture design time.To
appear, Journal of Systems and Software.

Lindvall, M. and Runesson, M. (1998). The visibility of
maintenance in object models: An empirical study. In
Proceedings of the International Conference on Software
Maintenance (ICSM’98), pages 54–62, Los Alamitos,
CA. IEEE CS Press.

Lindvall, M. and Sandahl, K. (1998). How well do ex-
perienced software developers predict software change?
Journal of Systems and Software, 43(1):19–27.

4


