
Modifiability through Architecture Analysis

Nico Lassing1 , PerOlof Bengtsson2, Jan Bosch3, Daan Rijsenbrij1 and Hans van Vliet1

1Division of Mathematics and Computer Science
Faculty of Sciences, Vrije Universiteit

Amsterdam, The Netherlands

2Department of Software Engineering and Computer Science
Blekinge Institute of Technology

Ronneby, Sweden

3Department of Mathematics and Computer Science
University of Groningen

Groningen, The Netherlands

Abstract

Software evolves. One of the challenges that orga-
nizations are facing is how to reduce the costs as-
sociated with these adaptations. To address this is-
sue, software architecture is seen as an important
tool. A system’s software architecture is generally
regarded to have a large influence on the effort re-
quired to adapt a system [1]. Therefore, analysis of
the decisions made at the architectural level is im-
portant to achieve modifiability and reduce the costs
of maintenance. The area addressing this is software
architecture analysis of modifiability. We have de-
veloped a method for this type of analysis, which is
presented in this paper.

1 Introduction

Many organizations today operate in a world in
which change is ubiquitous. Business developments
and new technology force them to adapt their infor-
mation systems regularly. Software architecture is
seen as an important tool to reduce the costs associ-
ated with these adaptations. A system’s software ar-
chitecture is the first artifact in the development pro-
cess and captures the very first design decisions for
that system [1]. These decisions not only concern
internal aspects of the system, i.e. its decomposition
in components and the dependencies between these
components, but they also concern the system’s en-
vironment, i.e. dependencies among systems and

their relationship to the technical infrastructure. De-
cisions on both levels have a large influence on the
effort that is required to modify the system once it
is built. Therefore, modifiability should not only
be considered when making these decisions, but it
is also important to assess whether the chosen soft-
ware architecture results in the required modifiabil-
ity. The area addressing this second aspect is soft-
ware architecture analysis (SAA) of modifiability.

We have defined a generic method for software
architecture analysis of modifiability. This method
is based on change scenarios, meaning that we cap-
ture likely, concrete events that may occur in the life
cycle of the system and explore their effect on the
system by studying the software architecture. This
allows us to make predictions about the modifibility
of the system before it has been built.

The method is a generalization of the work of the
authors independently (see for instance [7] and [2])
and was succesfully applied in various areas, such
as telecommunications, logistics and business infor-
mation systems. This paper gives an overview of the
method.

2 The generic method for SAA
of modifiability

The generic method for modifiability assessment
of software architecture that we advocate is based
on the Software Architecture Analysis Method



(SAAM) [5]. They both use scenarios to analyze
the software architecture of a system. The main
difference between the two is that we focus exclu-
sively on modifiability analysis and explicitly dis-
tinguish various goals in this area, namely risk as-
sessment, maintenance prediction and architecture
comparison.

We define modifiability in this context as the ease
with which a system can be adapted to changes in
the functional specification, in the environment, or
in the requirements. We explicitly exclude the cor-
rection of implementation errors and changes in the
quality requirements of the system. Changes in the
quality requirements are left aside, because the as-
sessment of their effect belongs to other disciplines.
Changes in the required processing capacity of a
system, for example, relate to scalability, which is
a field of study in itself (see [10]).

Our method consists of five steps:

1. Set goal: determine the aim of the analysis

2. Describe software architecture: give a descrip-
tion of the relevant parts of the software archi-
tecture

3. Elicit change scenarios: find the set of relevant
change scenarios

4. Evaluate change scenarios: determine the ef-
fect of the set of change scenarios

5. Interpret the results: draw conclusions from the
analysis results

Although this list suggests otherwise, these steps are
not always performed in the indicated sequence; it is
often necessary to iterate over them. In this section,
we give a overview of the various steps. A more
elaborate discussion of the full method is given in
[3].

2.1 Goal setting

The first step to take in software architecture anal-
ysis of modifiability is to set the analysis goal. The
goal determines the type of results that will be deliv-
ered by the analysis. In addition, the goal influences
the choice of techniques to be used in subsequent
steps. Different goals ask for different techniques.
With respect to modifibility, the following goals can
be pursued: (1) risk assessment, (2) maintenance
prediction and (3) software architecture compari-
son. The aim of risk assessment is to find types of
changes for which the system is inflexible, i.e. sce-
narios which are particularly difficult to accomplish.

We call this risk assessment because these changes
may be a threat to the evolution of the system.

On the other hand, when performing maintenance
cost prediction the aim is to estimate the cost of
(adaptive) maintenance effort for the system in a
given period. In a very general sense, we then use
a maintenance cost function Caverage (the average
cost per change scenario) of the form

Caverage =

P
n

i=1
C(change

i
)� p(change

i
)

n

where C(change
i
) denotes the effort or cost re-

quired to realize the i-th change scenario, and
p(change

i
) denotes the probability this scenario will

occur.
Finally, if the goal is software architecture com-

parison, we are comparing two or more candidate
software architectures to find the most appropriate
one. The difference between comparison and the
two aforementioned goals is that in comparison we
make relative statements about a number of candi-
date software architectures, while when pursuing the
other goals we make absolute statements about a sin-
gle candidate architecture. In comparison, we are
most interested in those change scenarios that have
a distinct effect on the various candidates.

2.2 Software architecture description

After the goal of the analysis is set, the next step is
to create a description of the software architecture.
This description should enable us to do architecture
level impact analysis for the set of change scenarios.
The information acquired in this step is recorded in
a number of architectural views.

An architectural view is a model of the software
architecture. It is commonly understood that the
software architecture cannot be captured in a single
model. Therefore, a system’s software architecture
is usually recorded in a number of views. Each ar-
chitectural view provides a particular perspective on
the software architecture capturing a set of design
decisions, such as the run-time perspective or the
deployment perspective. A collection of such views
is called a view model. A number of authors have
introduced view models, which consist of a coher-
ent set of views. The most important of these are
the 4+1 view model by Kruchten ([6]) and the four
architectures by Soni, et al. ([9] and [4]).

To perform architecture level impact analysis we
need those views that capture structural aspects of
the system, i.e. the system’s decomposition in com-
ponents, the relationships between these compo-
nents and the relation of the system to its environ-

2



ment. This information enables us to determine
which components have to be adapted, including
their ripple effects.

In the scenario evaluation step, we may discover
that essential information is missing. In that case,
we have to revisit this step and elaborate the descrip-
tion as needed.

2.3 Change scenario elicitation

One of the most important steps in modifiability
analysis is the elicitation of a set of change scenar-
ios. This set of change scenarios captures the events
that stakeholders expect to occur in the future of the
system. The main technique to elicit this set is to
interview stakeholders, because they are in the best
position to predict what may happen in the opera-
tional life of the system. Stakeholders are people
like the owner of the system, future users, develop-
ers and maintenance staff. It is important to involve
all of them in the analysis process, because each of
the stakeholders has a different perspective on the
evolution of the system and all these aspects are im-
portant.

The set of change scenarios that we acquire
should support the goal that we have set for the anal-
ysis. If the goal of the analysis is risk assessment
the elicitation process should be focused on those
change scenarios that are particularly difficult to im-
plement. This means that we should stimulate the
stakeholders to come up with change scenarios that
are complex.

If the goal of the analysis is maintenance pre-
diction, the scenario elicitation process should be
aimed at finding the set of most likely change sce-
narios. In addition to a description of the change
scenarios, we also need to come to a measure to in-
dicate their probability. This measure can also be
determined in the interviews with the stakeholders
of the system, because they are probably in the best
position to determine a scenario’s likelihood.

If comparison is the aim of our analysis, the set
of change scenarios should highlight the differences
between the two candidate architectures. Change
scenarios that have the same effect on all candidates
provide no real value to the analysis, only those
that discriminate between them. Such discriminat-
ing scenarios may be deduced from the characteris-
tics of the candidate architectures.

A possible limitation of our approach is that we
rely on stakeholders to come up with change sce-
narios. It is not unlikely that some scenarios may
be overlooked. This may be addressed by using a
more structural approach to scenario elicitation, in

which a theory of change scenarios is used to guide
the scenario elicitation process. This has proven to
be useful in our case studies. For a more elaborate
discussion of this approach see [3] and [8].

2.4 Change scenario evaluation

After eliciting a set of change scenarios, we deter-
mine their effect on the software architecture. This
means that we perform architecture level impact
analysis for each of the scenarios individually. To
do so, we first have to determine the components
of the system and components of other systems that
have to be adapted to implement the change sce-
nario. This task is typically performed in collabo-
ration with members of the development team.

After we have determined the components that
should be adapted, the results are expressed in such
a way that it supports the goal of the analysis. For
risk assessment this means that the results should be
expressed in such a way that it helps us to get insight
into the complexity of the required changes. In [7]
a number of factors is mentioned that we found to
influence the complexity of changes for business in-
formation systems. These factors include the ques-
tion whether the software architecture needs adap-
tation, the involvement of several system owners,
and the introduction of multiple versions of the same
component. These factors are not fully comparable,
but they help us gain insight into the complexity of
the required changes.

On the other hand, when the aim of the analy-
sis is maintenance prediction, the results should be
expressed in such a way that we may determine
the effort that is required to implement the change
scenario. Possible measures include the number of
lines of code that are affected, and the aggregate size
of the components that are affected. The choice for
a specific set of measures depends on the prediction
model used.

For architecture comparison, the results of the
evaluation should be expressed in such a way that it
enable us to compare the candidates. Various strate-
gies can be employed. For instance, we may deter-
mine for each change scenario the candidate archi-
tecture that supports it best, or if there are no differ-
ences. Alternatively, we can rank the candidate ar-
chitectures for each change scenario depending on
their support for the scenario. Or otherwise, we can
determine the effect of the scenarios individually on
each candidate architecture and express this effect
using some scale, e.g. a five level scale (++, +, +/-
, -, and --) or the number of lines of code affected.
In the next step these results are then interpreted to

3



come to an overall comparison.

2.5 Interpretation

After we have determined the effect of the change
scenarios, we can interpret these results to come to
a conclusion about the system under analysis. The
way the results are interpreted is again dependent
on the goal of the analysis. However for each goal
it is important that the likelihood of the scenarios is
considered in this selection process.

If the goal of the analysis is risk assessment the
results of the scenario evaluation are investigated to
determine which change scenarios pose risks, i.e.
for which scenarios the product of probability and
costs is too high. The criteria for determining which
values are still acceptable should be based on man-
agerial decisions by the owner of the system. When
risks are found, various risk mitigation strategies are
possible: avoidance (take measures to avoid that the
scenario will occur or take action to limit their ef-
fect, for instance, by use of tools), transfer (choose
another software architecture) and acceptance (ac-
cept the risks).

In maintenance prediction, the aim of this step is
to come to an estimate of the amount of effort that
is required for maintenance activities in the coming
period. To this end an estimation function is used
as given in section 2.1. The estimate can then be
compared with the requirements that were formu-
lated for the system.

If the goal of the analysis is architecture compar-
ison, we compare the results of the evaluation of the
two sets of scenarios and choose the most appropri-
ate candidate architecture.

3 Summary

This paper gives an overview of our method for
software architecture analysis of modifiability. This
method consists of five steps in which we employ
scenarios, capturing concrete and likely changes, to
gain insight into the modifiability of a system. The
first step is to set the goal of the analysis. We dis-
cussed the three goals that we distinguish for modi-
fiability analysis: risk assessment, maintenance pre-
diction and architecture comparison. The second
step is to create a description of the software ar-
chitecture under analysis. This description serves
as a basis for the rest of the analysis process. The
third step is to interview stakeholders to elicit a set
of change scenarios. The effect of these scenarios
is determined in the next step, the result of which

is expressed using an appropriate measure. Subse-
quently, these results are interpreted to reach a con-
clusion about the modifiability of the system. This
method has succesfully been applied in a variety of
settings, such as logistics, telecommunications and
business information systems.

Acknowledgements

We are very grateful to Cap Gemini Netherlands for
their financial support of this research.

References

[1] L. Bass, P. Clements, and R. Kazman. Soft-
ware Architecture in Practice. Addison-
Wesley, Reading, Massachusetts, 1998.

[2] P. Bengtsson and J. Bosch. Architecture
level prediction of software maintenance. In
Proceedings of the 3rd European Conference
on Software Maintenance and Reengineering,
pages 139–147, March 1999.

[3] P. O. Bengtsson, N. Lassing, J. Bosch, and
H. van Vliet. Analyzing software archi-
tectures for modifiability. Technical Re-
port HK-R-RES–00/11-SE, Högskolan Karl-
skrona/Ronneby, 2000.

[4] C. Hofmeister, R. Nord, and D. Soni. Applied
software architecture. Addison-Wesley, Read-
ing, Massachusetts, 1999.

[5] R. Kazman, G. Abowd, L. Bass, and
P. Clements. Scenario-Based analysis of soft-
ware architecture. IEEE Software, 13(6):47–
56, 1996.

[6] P. B. Kruchten. The 4+1 view model of archi-
tecture. IEEE Software, 12(6):42–50, 1995.

[7] N. Lassing, D. Rijsenbrij, and H. van Vliet. To-
wards a broader view on software architecture
analysis of flexibility. In Proceedings of the 6th
Asia-Pacific Software Engineering Conference
’99 (APSEC’99), pages 238–245, 1999.

[8] N. Lassing, D. Rijsenbrij, and H. van Vliet.
Why I come to a better set of change scenarios
than you. Technical report, Vrije Universiteit,
Amsterdam, 2000.

[9] D. Soni, R. L. Nord, and C. Hofmeister. Soft-
ware architecture in industrial applications. In

4



R. Jeffrey and D. Notkin, editors, Proceedings
of the 17th International Conference on Soft-
ware Engineering, pages 196–207, New York,
1995. ACM Press.

[10] M. van Steen, S. van der Zijden, and H. Sips.
Software engineering for scalable distributed
applications. In Proceedings 22nd Interna-
tional Computer Software and Applications
Conference (CompSac), 1998.

5


