
A View on Components

N.H. Lassing D.B.B. Rijsenbrij J.C. van Vliet
Vrije Universiteit,

Amsterdam
Vrije Universiteit,

Amsterdam
Vrije Universiteit,

Amsterdam
nlassing@cs.vu.nl daan@cs.vu.nl hans@cs.vu.nl

Abstract
Components are nowadays considered the next step in
information system development. Components are
assumed to foster reuse and flexibility, and reduce the
complexity of distributed deployment. The purpose of this
paper is to investigate the properties of components that
determine whether the above goals are met. To that end,
we explored the literature and had a number of interviews
with representatives from tool-vendors, tool-users and
software houses. The resulting views are summarized in
this paper, and applied to a small example. In our further
research, the architecture sketched in this example will be
worked out in further detail, and compared with the
architecture of similar systems found in industry. Such
will deepen our understanding and assessment of
architectural choices made.

1.�Introduction

Many organizations regard components as the next step in
information system development. This is illustrated by the
increasing number of vendors that are selling tools to
support component-based development (CBD). These
tools enable the developer to build components, combine
components and deploy components. However, not every
component that is built with such a tool, fully exploits the
benefits of CBD. Some of the components we build are
better than others. We would like to gain insight into the
properties of a component that determine whether one
component is better than another. The criterion to judge
whether one component is better than another is its
suitability to support the goals of the use of components.

To ensure that our results are applicable in concrete
situations we explored the existing views on components.
This exploration included a study of the literature and
interviews with companies investing in components.
These included tool-vendors, tool-users and software
houses. They all have their own view on components. The
purpose of this paper is to summarize the ideas behind
these views.

In section 2 we indicate the goals we like to achieve by
using components. In section 3 we describe the existing
ideas about components. In section 4 we describe the
relation between components and frameworks, two
concepts that are often used in combination. And in
section 5 we apply the ideas of the first sections in an
example.

2.�Goals

We can distinguish a number of goals we would like to
achieve by using components. The most important of
these are:
• Reuse (or multiple-usage as some people call it)
• Flexibility
• Reduction of the complexity of distributed deployment

For each of these goals we will discuss the benefits we
expect to gain and the challenges we face when we try to
achieve them.

2.1.�Reuse

With the rise of components, the attention for reuse also
increased, for it is believed that components are the
optimal unit for reuse. Reuse is expected to have a
number of potential benefits. The most important of these
are a reduction of the time-to-delivery, a reduction of the
development costs and a reduction of the number of
errors in the delivered information system ([6]).

We have been trying to achieve reuse for three decades
now, but we have not been very successful so far. This is
caused by a number of problems. The main problem is
that it is hard to determine which functionality a
component should possess to be optimally reusable. Van
Vliet ([10]) states that “a reusable component is to be
valued, not for the trivial reason that it offers relief from
implementing the functionality yourself, but for offering a
piece of the right domain knowledge, the very
functionality you need, gained through much experience
and an obsessive desire to find the right abstractions”.

This means that our goal should not be to find
components that are usable in every domain, but that it is
more important to find the right components for a certain
domain.

A more technical objection to reuse is what Garlan et
al. call architectural mismatch (see [5]). Architectural
mismatch occurs when the assumptions a component and
its environment make about each other are conflicting.
This complicates the collaboration of a collection of
components. To prevent architectural mismatch a number
of things need to be in harmony. First, the expectations
the environment has of a component should agree with
the actual service provided by that component (for
example performance). And second, the assumptions a
component makes about its environment should agree
with the actual environment. The component could, for
example, assume the presence of an event-handler in the
environment, without which the component will not
function.

Two approaches to the reduction of architectural
mismatch can be distinguished. The first one is to make
the service provided by the component and the
expectations the component has of its environment
explicit. This can be captured in a contract. We will
describe a possible form of such a contract in section 3.2.

The second approach is the use of software
architectures. Shaw and Garlan state that software
architecture involves the description of elements from
which information systems are built, interactions among
those elements, patterns that guide their composition, and
constraints on these patterns ([8]). Thus, a software
architecture indicates which types of components are used
in an information system and how they collaborate. It puts
constraints on the components, thereby decreasing the
risk of architectural mismatch.

To implement the concepts described in a software
architecture we can build a framework. In section 4 we
will describe the relation between components and
frameworks.

2.2.�Flexibility

Flexibility can be described as the ease with which an
application can be adapted to changing requirements. The
flexibility of a system is increased if changes to the
requirements impact only a limited part of that system.
Therefore, we would like to subdivide our system into a
number of components that can be changed (within
certain limits) without affecting other components. We
can be certain that a change to a component does not
affect other components if the contract of the component
does not change.

We now have two challenges for the design of the
system. First we need to divide the system into
components in such a way that changes in the

requirements impact as few components as possible. Such
a division can only be found if we have insight in the
changes that can be expected. And second we need to find
components that can be changed without affecting other
components. The contracts of these components should
leave room for certain types of changes.

2.3.�Reduction of the complexity of distributed
deployment

An increasing number of information systems is divided
into a number of elements which are distributed over
several clients and servers. The distribution of the
elements impacts the performance, stability and security
of the information system. In finding the optimal
distribution of the information system the developer has
to consider the following factors:
1. the expectations that each distribution element has of

its environment,
2. relations between elements that determine whether

these elements have to be put on the same location,
3. the required performance, stability and security.

The first two factors limit the freedom of the
developer, they are preconditions for the distribution of
elements. The task of the developer is to find a
distribution that satisfies these preconditions and yet
delivers the required performance, stability and security.
When information systems consist of a large number of
elements, this task can get very complicated.

Using components can reduce this complexity, if the
components satisfy two conditions. The first condition is
that the expectations a component has of its environment
are described in a contract. The second condition is that
components can be distributed independently of each
other, i.e. the placement of component A on location L
does not imply that component B is placed on location L
too.

3.�Components

A number of different views on components exist. In this
section we describe the common ideas used in these
various views.

3.1.�Definition of a component

The term component is used for a number of concepts. If
we accumulate the common elements of the different
views on components, we get the following definition:

A component is a part of a system that can be
separated from the rest of the system.

However, this definition is very general and gives little
to go on. By using components that satisfy this definition
we do not automatically achieve the goals mentioned in
section 2. To support these goals components should at
least have the following additional properties:
• The component should represent a recognizable

concept for the developer
• The component only communicates through interfaces

defined for the component
• It is clearly defined what can be expected from the

component and what the component expects from its
environment

• The component can be distributed independently of
other components.

This list is probably not yet complete; during further
research it will be expanded with other properties.

3.2.�Contracts

In the previous sections we mentioned that the services of
a component should be made explicit in a contract. A
contract of a component should include a specification of
the following aspects:
• Functionality: a specification of the function of the

component.
• Environment: a specification of the environment that

the component expects. This includes a specification
of the infrastructure, the control-structure and the data
model the component expects in its environment (see
[5]).

• Interfaces: a specification of the way the component
can be invoked as well as a specification of how the
component calls other components. This does not only
include function names, but also the structure of
parameters given and protocols used.

• Service level: a specification of the service levels
delivered by the component. This includes things like
performance, reliability, and scalability. How these
levels can be measured and specified is not yet clear.
This is a topic of further research.

3.3.�Types of components

As mentioned in section 2.1 the software architecture of a
system indicates the types of components that are used in
a system. We argue that it is useful to classify the various
types of components that can be distinguished into a
number of categories. If we have a number of categories
of components and the characteristics of these categories
are considered when the software architecture is
formulated, the chance that existing components can be
reused is increased.

We classify components into two categories: IT-
components and business components. IT-components are
technical in nature and represent concepts that are mainly
used by developers. Business components represent
concepts from the user-domain. For these categories we
encountered various types of components in our sessions
with industry.

IT-components:
• user interface-components: components that

implement elements of the user interface. This
includes things like buttons, list-boxes and edit-boxes.

• technical infrastructure components: components that
offer technical services that are used by other
components of the system. This includes things like an
event-handler, a database-management system and an
authorization manager.

Business components:
• functional components: components that perform some

sort of function. An example of this is an interest
calculation-component.

• business objects: components that implement the data
and functions of a concept from the business domain.
The state of these objects should be persistent over the
life of the application. Examples of this are a
customer-component and an order-component.

• collaboration components: components that implement
a (template) collaboration between a number of
components. In [2] these components are called
frameworks. An example of this is a sales-component,
that is a collaboration between an order- and a
customer component.

3.4.�Approaches to components

We encountered two different approaches of tools to
components. The first approach is to see components as a
piece of executable software, together with a specification
of its interface, and the second is to see a component as a
fragment of a model. The major difference between these
approaches is that in the first approach components are
only executable on a specific platform, while in the
second approach an implementation of the components
can be generated for various execution platforms.

The major advantages of generating the
implementation from models are that the components are
not platform-specific and they can be easily adapted. The
major disadvantage, however, is that the models can only
be used in the tool they are defined in, although this is
changing by developments like UML and tool-
independent languages. Executable components, on the
other hand, can sometimes be used in different tools, but
they are platform-specific and not easily adaptable.

4.�Components and frameworks

Frameworks are often regarded as an environment for the
reuse of components ([3] and [7]). Therefore, it is useful
to explore how components and frameworks are related.

A framework consists of a number of concrete and
abstract classes and a definition of the way instances of
these classes collaborate. The concrete classes implement
the collaboration of the classes. The abstract classes are
the points at which the framework can be used or adapted.

A framework usually implements some technical
mechanism, but the same ideas can be applied to business
mechanisms. A framework implements the larger part of
the complexity of these mechanisms. The technical
mechanisms include things like a user interface, object
persistency and communication between distributed
components. The business mechanisms include things
like order-administration and logistics.

An application can use the framework in two different
ways ([9]). The first is to inherit from the abstract classes
provided by the framework. The second way is to use the
services provided by the framework by calling functions
defined in its interface.

Abstract classes not only serve as the base of the
classes of an application built on the framework, but are
also used as variation points of a framework. A variation
point is a part of the framework for which the
implementation is not given, but only the specification of
the interface. These points allow the framework to be
adapted to a specific situation. Variation points do,
however, need to be filled in with a concrete class that
implements their interface, otherwise the framework will
not function. An example of this is a framework for
object-persistency in which the persistency-broker itself is
left open as a variation point. The framework implements
the collaboration between the entities of the framework
and the persistency-broker. However, only the definition
of the interface of the persistency-broker is given,
possibly together with a number of options for its
implementation. The developer can now choose which
implementation for the persistency-broker he prefers to
use.

A framework is derived from a software architecture.
The architecture indicates which components are used in
the system and how they interact, and the framework
provides an environment in which these components can
be placed.

5.�Example: Personnel Administration
System

In this section we show how these ideas can be applied in
a (simple) application. The example concerns a personnel
administration system. Personnel administration systems

are used in different domains. They share a common core
of functionality that is extended with domain-specific
functionality. However, we have decided to keep things
rather simple and focus on common functionality.

5.1.�Required functionality

The conceptual model of the domain under study is
shown in the class diagram1 of Figure 1. The system that
we use in this example records information about the
concepts shown in this diagram.

(PSOR\HH�

$VVLJQPHQW�

6DODU\�VFDOH�

'HSDUWPHQW�

3HUVRQQHO�EXGJHW�

0..n

0..n

1

1

1

1

0..n

0..n

period
amount

name
address

period
function

name

number
amount

)LJXUH����&ODVV�GLDJUDP�RI�SHUVRQQHO
DGPLQLVWUDWLRQ

The system should support functions like:
• Create/delete/edit employee
• Create/delete/edit department
• Create/delete/edit salary scale
• Assign an employee to a department
• Delete assignment
• Assign personnel budget to a department
• Report comparison personnel budget and personnel

cost per department
• Report employees per department

5.2.�Software architecture

In this section we outline the software architecture for the
personnel administration system. During the development
of this software architecture we consider the desired level
of flexibility and distribution.

For the distribution of the application we had to make
a number of choices. We have decided that the
application can be accessed from a number of distributed
clients. As a corollary, the user interface is replicated for

1 All class diagrams are depicted in the UML notation (see [4]).

each client. Then we had to choose whether the data of
the application is replicated on different servers or not.
We chose not to do so. For reasons of security the data
needs to be located on a secure server and we presuppose
only one server that is placed in a secure environment.
And finally we had to choose where the processing of the
application should take place: on the clients, on a server
or on multiple servers. This question is left unanswered
and we demand that our software architecture enables us
to decide later where the processing should take place.

Thus, from the point of view of distribution we need
three separate layers: a user interface-layer, a processing-
layer and a data management-layer. The user interface-
layer and the data management-layer in their entirety can
be used as units of distribution. The user interface-layer is
replicated for each client and the data management-layer
is located on our secure server. The processing-layer
should be divided into smaller units of distribution,
because this layer can be distributed over multiple
locations. We chose to create a unit of distribution for
each function the application can perform. Figure 2 shows
the layers and units of distribution of the application.

User interface-layer

Data management-layer

Processing-layer

client

server

client
or

server

)LJXUH����7KH�OD\HUV�RI�WKH�DSSOLFDWLRQ�DQG�WKHLU
ORFDWLRQ

We indicated that the flexibility of an application is
increased if changes to the requirements only impact a
small number of elements of our application and changes
to an element impact as few other components as
possible. To limit the impact of changes in the
requirements we should consider the expected changes to
the requirements. In our example we expect that in the
future the system will also be used to record additional
information about the employee, such as career paths and
courses taken. These changes necessitate an extension of
the class diagram and the addition of a number of
functions. We anticipate these changes to the class
diagram by dividing the data management-layer into a
component for each class of the class diagram, which we
will call business objects. This way, when we add an class
to the class diagram, we just have to add another business
object and existing business objects remain the same.
Because we have already divided the processing-layer
into components for each function we can add function-
components without the need to change existing function-

components. The user interface-layer consists of the
windows and dialog-boxes that present information to the
user and receive input from the user. To enhance the
flexibility these windows are also created according to the
class diagram. Thus, for each business object and each
relation a separate window is created.

To limit the impact of changes to a component we
have chosen to put a number of constraints on these
layers. The first constraint is that all access to a
component goes through the interface defined in its
contract and the second is that components of a layer are
only accessed by components of the next higher layer.
The advantage of this approach is that if changes to a
component do not impact the contract, components of
other layers do not have to be adapted and, if the contract
should change, only components of higher layers need to
be adapted. Figure 3 shows the subdivision of our
application.

Functions

Windows

Business objects

User interface-layer

Processing-layer

Data management-
layer

)LJXUH����8QLWV�RI�IOH[LELOLW\

If we want to use these components in other
applications we should make them as independent as
possible. The independence of business objects is further
increased by creating separate objects for the relations
between them. These relation objects are business objects
that consist of the key-values of the business objects that
participate in the relation.

To make a distinction between components in the
processing-layer that do access components of the data
management-layer and those who do not, we have divided
them into two categories: collaboration components and
functional components. Collaboration components could
be impacted by changes in the data management-layer,
but functional components will not.

Note that we have not yet addressed the question
whether these components offer the right domain
knowledge. We postpone this question to the evaluation
in section 5.6.

The above discussion might suggest that developing a
software architecture is a linear process. It is not. It is the
result of an iterative process of considering all factors and
translating them into a model.

5.3.�Communication architecture

Distributing the components of the application over a
number of clients and servers also raises the question of
how the distributed components communicate with each
other. They can not access each other directly because
they are placed at different locations and they do not
know each other’s location. In this example we have
chosen to use a central message-broker to send messages
between the distributed components.

Using a central message-broker puts a number of
constraints on the components of the application. First,
upon creation a component needs to register with the
message-broker, for if the message-broker does not know
the existence and location of a component it can not send
messages to it. Second, when a component wants to send
a message to another component it sends the message to
the message-broker which forwards the message to the
destination component. This introduces two new
problems: how can the destination of a message be
specified and how do the components know where the
message-broker is. The first of these problems is solved
by assigning a unique component-identifier to each
component. This identifier consists of a part that indicates
the component and a part that indicates the location of the
instance of the component. The first part of the identifier
is assigned to a component at design-time and the second
part is assigned at run-time by the message-broker.

The second problem could be solved by hard-coding
the location of the message-broker in each component.
The drawback of this approach is that it limits the
scalability of the application, for it prohibits us to add
another message-broker if the number of users increases.
We decided to solve the problem by placing a small part
of the message-broker, often called a stub, on each
machine. Sending a message from one component to
another now results in the following sequence of actions.
The component sends the message to the stub of the
message-broker, together with the component-identifier
of the target component. For all components, except the
user interface elements, providing the component class-
identifier is sufficient, because based on this identifier the
message-broker can locate the target component.
However, for user interface elements the location-
identifier is also necessary, because multiple instances of
the same component might exist. The stub then forwards
this message to the central message-broker. The message-
broker locates the target component, forwards this
message to the stub at the target location, which delivers
the message to the target component.

Calling methods by sending messages means that
calling the method and receiving an answer are separated.
In section 5.4 we indicate how this mechanism is
supported by the components. In Figure 4 the
communication structure of the application is shown.

Window Window Window Window

Message-
broker

Business
object

Business
object

Business
object

Message-broker stub

Message-broker stub

C
ol

la
bo

ra
tio

n
co

m
po

ne
nt

M
es

sa
ge

-
br

ok
er

 s
tu

b

C
ollaboration
com

ponent

M
essage-

broker stub

Functional
com

ponent

M
essage-

broker stub

C
ol

la
bo

ra
tio

n
co

m
po

ne
nt

M
es

sa
ge

-
br

ok
er

 s
tu

b

)LJXUH����&RPPXQLFDWLRQ�EHWZHHQ�WKH
FRPSRQHQWV

5.4.�Framework

In this section we describe how a framework for message-
brokerage is created. We will assume that the framework
will be implemented in Java, but we will not show its full
implementation. We focus on three things: (1) a definition
of the interface of the service of the framework, (2) a
definition of the abstract classes that serve as variation
points and (3) a definition of the abstract classes from
which the components of our application can be derived.
Java does not support multiple inheritance, but provides
the notion of interfaces to support a similar mechanism
(see [1]). An interface definition can be regarded as a
fully abstract class. To distinguish abstract and interface
definitions from concrete ones we use the UML
convention, which is to italicize the name of abstract
definitions and to add the keyword <<interface>> to
interface definitions (see [4]).

5.4.1. Services. The service our framework offers is
message-brokerage. In our architecture we have chosen to
use one central message-broker and to place stubs of this
message-broker on each location. The application-
components call these stubs to send messages to the
message-broker and the message-broker uses these stubs
to deliver these messages. So, in fact the definition of the
stub is the interface of the framework. The class

definition of the message-broker stub (including only the
public methods) is shown in Figure 5.

0HVVDJH%URNHU6WXE�

+ MessageBrokerStub()
+ registerApplicationComponent
 (ComponentClassID) : LocationID
+ sendMessage (SenderID, TargetID,
 Message)
+ forwardMessage (SenderID, TargetID,
 Message)

)LJXUH����&ODVV�GHILQLWLRQ�RI�0HVVDJH%URNHU6WXE

Besides its creator, which registers the stub with the
central message-broker, the message-broker stub has
three public methods. The first is used to register
application-components (in section 5.4.3. we explain
what an application-component is). The second method is
invoked by application-components and takes care of
sending a message from one application-component to
another. The third method is invoked by the message-
broker and forwards messages to components that are
located on the machine of the stub.

A ComponentID consists of a ComponentClassID and
a LocationID. When a message is sent through the
message-broker, the component identifier of the sender
and target component are given. All components, except
window-components, are unique and can be found based
on their ComponentClassID. Thus, supplying this part of
the ComponentID is sufficient for these components.
Messages to window-components should include the
LocationID to indicate the instance of the component that
is meant.

5.4.2. Variation point. A variation point is a part of the
framework for which the implementation is not fixed, but
can be chosen to fit the situation at hand. In this
framework we have chosen to make the message-broker a
variation point. This enables us to change its
implementation independently of the rest of the
framework. For the framework this means that only the
interface definition of the MessageBroker is included.
Unless an implementation of this interface is given, the
framework will not function. In Figure 6 the definition of
the interface is shown.

0HVVDJH%URNHU�

+ VHQG0HVVDJH��6HQGHU,'��7DUJHW,'���
����������������������������������0HVVDJH��
��UHJLVWHU6WXE�/RFDWLRQ��
+ UHJLVWHU$SSOLFDWLRQ&RPSRQHQW�
������������������&RPSRQHQW,'��

<<interface>>

)LJXUH����7KH�LQWHUIDFH�RI�0HVVDJH%URNHU

We can ask ourselves whether the class that provides
an implementation for this message-broker is a
component. We think it is, because it has all properties of
components we mentioned in section 3.1. It is an example
of a technical infrastructure component.

5.4.3. Abstract classes and interfaces. We have chosen
to create one interface for all application-components. An
application-component is a component that belongs to the
application and not to the framework. By defining this
interface, we allow the message-broker stubs to access the
application-components independent of their type. The
interface definition is given in Figure 7.

$SSOLFDWLRQ&RPSRQHQW�

��VHW0HVVDJH%URNHU6WXE�
������������0HVVDJH%URNHU6WXE��
+ KDQGOH0HVVDJH��6HQGHU,'��
�����������������0HVVDJH��

<<interface>>

)LJXUH����7KH�LQWHUIDFH�RI�$SSOLFDWLRQ&RPSRQHQW

The method setMessageBrokerStub(MessageBroker-
Stub) informs the component of the message-broker stub
it should use. The method handleMessage(SenderID,
Message) is called when the component receives a
message. It should call the requested method and
afterwards return the result of this method to the sender.

The business objects of the application have a number
of properties and methods in common. These common
elements are captured in the abstract class
BusinessObject. Its class diagram is shown in Figure 8.

 $SSOLFDWLRQ&RPSRQHQW�

%XVLQHVV2EMHFW�

+ setMessageBrokerStub
 (MessageBrokerStub)
+ KDQGOH0HVVDJH�6HQGHU,'���
�����������������0HVVDJH��
+ FUHDWH1HZ(QWU\�YDOXHV�
+ GHOHWH(QWULHV�FULWHULD�
+ ILQG�FULWHULD���YDOXHOLVW

- MessageBrokerStub
- ComponentID

<<interface>>

)LJXUH����&ODVV�GLDJUDP�RI�%XVLQHVV2EMHFW

Likewise, we have chosen to create abstract base
classes for collaboration components, functional
components and window-component. We have omitted
their class diagrams, because these diagrams are similar
to the class diagram of BusinessObject.

Each of the machines that will be used for the system,
needs to be initialized to create a message-broker stub and
the application-components that will run on that machine.
We have chosen to create two abstract classes,
ClientApplication and ServerApplication, from which the
initializing classes for clients and servers should be
derived. The main difference between them is that after
starting the application on a client the main-window is
shown. An interesting question is if a descendant of one
of these classes is a component. Though we can describe
the relations of this class with other parts of the
application, we feel it is too tightly integrated with a
specific application and cannot be reused in another
application. Therefore, we will not consider this class a
component. Apparently, if a class is too tightly integrated
with a specific application it is not a component.

5.5.�Components

In the previous sections we have shown from which types
of components our application is built. In this section we
work out two of these components, a business object and
the message-broker.

The business objects are the classes and the relations
of the class diagram in Figure 1. We will focus on the
Employee business object. Its class hierarchy is shown in
Figure 9.

 %XVLQHVV2EMHFW�

(PSOR\HH�

- MessageBrokerStub
- ComponentID

+ Employee()
+ setMessageBrokerStub
 (MessageBrokerStub)
+ handleMessage (SenderID,
 Message)
+ createNew Entry (values)
+ deleteEntries(criteria)
+ find(criteria): valuelist

)LJXUH����&ODVV�GLDJUDP�RI�WKH�(PSOR\HH
EXVLQHVV�REMHFW

The contract for the Employee business object
includes the aspects mentioned in section 3.2, except for
the service level. We have omitted the specification of
this service level because it is dependent on the
implementation of the component and we did not
implement the components.
• Functionality: The component Employee registers the

name and address of the employees of an organization.
The component handles the communication with the

database management-system for the employee data.
• Environment: The Employee component makes a

number of assumptions about its environment.
• Infrastructure: The Employee component assumes

the presence of a message-broker stub and a Java
Virtual Machine (including JDBC-support) in its
environment.

• Control structure: The component does not have
the primary thread of control. It is only activated
when one of its functions is called. The component
can handle only one concurrent transaction. When
the component executes a request, other requests
are stalled.

• Data model: The component expects a database
table named Employee with two columns:
• Name: String[30]
• Address: String[60]

Interfaces: The component has both an upper- and a
lower-interface. The upper-interface consists of the
public methods defined in Figure 9. The lower
interface consists of the way the component accesses
the message-broker and the JDBC-driver. It calls the
following functions of the message-broker stub:
• sendMessage (SenderID: ComponentID, TargetID:

ComponentID, Message: Message)
• registerApplicationComponent (ComponentID:

Integer): LocationID
The JDBC-driver is accessed according to the JDBC
API. We will not go into the details of this API.

The message-broker is a variation point of the
application. We need a component that implements its
interface. The framework hides the complexity of the
communication between the message-broker and its stubs.
For the component this communication is completely
transparent. Its class definition is given in Figure 10.

0HVVDJH%URNHU�

<<interface>>

0HVVDJH%URNHU�

+ sendMessage (SenderID, TargetID,
 Message)
+ registerStub (Location)
+ registerApplicationComponent
 (ComponentID)

)LJXUH�����&ODVV�GLDJUDP�RI�0HVVDJH%URNHU

The component has the following contract:
• Functionality: The message-broker sends incoming

messages to the target location.

• Environment: The message-broker makes the
following assumptions about its environment.
• Infrastructure: The message-broker assumes the

presence of a Java Virtual Machine in its
environment.

• Control structure: The message-broker has the
primary thread of control. It waits for requests and
executes them when they come in. The message-
broker can execute only one concurrent request.
The environment should queue the requests as they
come in.

• Data model: The message-broker maintains a list of
application-components and their location and a list
of message-broker stubs and their location.

• Interfaces: The upper-interface of the message-broker
consists of the public functions defined in the class
diagram in Figure 10. The lower-interface consists of
the following method of the message-broker stubs:
• forwardMessage (SenderID: ComponentID,

TargetID: ComponentID, Message: Message)

5.6.�Evaluation

In this section we have applied the ideas about
components to an example. We showed how the
components of the system are determined by making a
number of decisions about the software architecture. It is
likely that when these decisions are taken differently,
different components would be distinguished. For
example, when the components of the system are not
distributed we would not need components that
communicate through a message-broker.

It is useful to assess whether we achieved our goals:
reusability, flexibility and reduction of the complexity of
the distributed development. The reusability of our
components can be judged by determining in which other
applications they can be used. This depends on two
things:
• For which applications does the component deliver the

right functionality?
• In which other environments does the component fit?

To answer these questions we need to make a
distinction between IT-components and business
components. IT-components do not implement domain-
specific functionality and therefore they are usable in
different user-domains. However, they are closely related
to the architecture of an application. Not only should they
fit this architecture, but they should also implement
functionality that is relevant for the architecture. This
means that for IT-components the first question should
state: For which architectures does the component deliver
the right functionality? Our example included one IT-
component, namely the message-broker. This message-

broker is possibly reusable in other architectures, as long
as message-brokerage is used in this architecture.

Business components, on the other hand, are somewhat
different. Their functionality is specific for a user-domain
and, as van Vliet ([10]) remarks, they should reflect the
primitive notions of the user-domain at the right level of
abstraction. We suspect the level of abstraction of our
business components to be too low, because the concepts
they represent are not the concepts of the user-domain,
they are too technical. Research will have to show if we
can find components at the right level of abstraction for
reuse and are still able to achieve our other goals.

The flexibility of the application can be assessed by
considering the effort necessary to implement changes to
the requirements. We need to make a distinction between
functional and technical flexibility. Functional flexibility
concerns changes to the functional requirements of an
application and technical flexibility concerns changes to
the technical requirements (such as performance and
security). During the development of the architecture we
took into account the fact that the system will be extended
to record more information about employees. We took
measures to limit the impact of these changes. An
interesting question is if these measures also permit
changes to the functionality that were not anticipated.
Because our application is structured according to the
class diagram, this means that changes that have a great
impact on our class diagram also have a great impact on
our application.

We did not consider any changes in the technical
requirements, but it is interesting to see what happens
when these requirements change. For example, let us
assume that our application was originally developed for
10 users, but it will now be used by a multinational with
branches all over the world. This has a number of
consequences for our application. First, for reasons of
performance, our architecture with one central message-
broker will not be adequate anymore. We will need some
other form of message-brokerage, for example using
multiple message-brokers. Also for reasons of
performance it is decided that the business objects will
not be located on a central server, but that they will be
distributed over a number of servers. Next, because
people in different countries will use the application, the
user interface of the application needs to be available in
several languages. And finally, for security reasons it is
decided that an authorization mechanism will be
introduced. This mechanism should allow us to define
rules for accessing entries of our business objects. We
should, for example, be able to define a rule that states
that only a certain group of people can edit salaries above
$50,000. In Table 1 we have shown the effect of these
changes. A plus sign (+) means that the change is
supported by the architecture of our application and a
minus sign (−) means it is not.

Change Solution

Multiple message-
brokers (+)

This change can be encapsulated
behind the interface of the message-
broker stubs. It requires a new
message-broker and possibly an
adaptation of the message-broker
stubs.

Distributed business
objects (+)

The business objects are already
independent of each other, so
distributing them requires little effort.

Localized user-
interface (+)

The application is not dependent on
the user interface, which means that
the user interface can be changed
without affecting the rest of the
application.

Authorization
mechanism (−)

This additional requirement has an
impact on many aspects of our
application. It will require us to
change almost every component of
the application.

7DEOH����7KH�HIIHFW�RI�WKH�SURSRVHG�FKDQJH

Apparently, some changes in the technical
requirements impact the business components. An
interesting question is which architectural choices help us
limit this impact.

In the example we explicitly considered the fact that
the components of the application are distributed.
However, we cannot judge whether the complexity of the
distributed deployment decreased, because we did not
show how the application is distributed and deployed. We
did, however, see that components that are distinguished
for distribution differ from the ones distinguished for
flexibility and reuse. In this example the components that
are distinguished for distribution are larger than the
components distinguished for flexibility and reuse, but
this does not always have to be the case. We need to gain
further insight into the relations between the goals and the
components.

6.�Conclusion

The purpose of this paper is to describe the ideas we
encountered during our exploration of the existing views
on components. We started this description by listing the
main goals we like to achieve by using components: (1)
reuse, (2) flexibility and (3) a reduction of the complexity
of distributed deployment. These goals will not be
achieved automatically, but during the development of the
architecture of a system we should be focussed on
achieving them. We also note that frameworks are closely
related to components. Frameworks implement complex
technical or business mechanisms and can be used as an
environment for components.

We applied the ideas described in an example.
Although this example is somewhat theoretical, it raises a

number of questions, like what is the optimal level of
abstraction for a reusable component and how does this
influence the flexibility and ease of deployment of the
component. Our next step will be to put our ideas into
practice. We will work out the architecture sketched in
our example and compare it with the architecture of
similar systems found in industry. This way, we hope to
find answers to questions raised, thus deepening our
understanding of choices made.

Acknowledgements

This research is mainly financed by Cap Gemini
Netherlands. We are very grateful to Guus van der Stap
and Ad Strack van Schijndel of Cap Gemini Netherlands
for their ideas and their comments on the initial text. We
would also like to thank the representatives of the various
organizations that took the time to talk to us and share
their ideas.

7.�References

[1] Gary Cornell and Cay S. Horstmann. Core Java. Prentice-
Hall, Upper Saddle River, 1996.

[2] Desmond F. D’Souza and Alan C. Wills. Objects,
components and frameworks with UML. Addison-Wesley,
Reading, 1998.

[3] Mohamed E. Fayad and Douglas C. Schmidt. Object-
Oriented Application Frameworks. Communications of the ACM
40, 10 (1997), pp. 32-38.

[4] Martin Fowler and Kendall Scott. UML Distilled: Applying
the Standard Object Modeling Language. Addison-Wesley,
Reading, 1997

[5] David Garlan, Robert Allen and John Ockerbloom.
Architectural Mismatch: Why reuse is so hard. IEEE Software
12, 6 (1995), pp. 17-26.

[6] Ivar Jacobson, Martin Griss and Patrik Jonsson. Software
Reuse: Architecture, Process and Organization for Business
Success. ACM Press, New York, 1997.

[7] Ralph E. Johnson. Frameworks = (Components + Patterns).
Communications of the ACM 40, 10 (1997). pp. 39-42.

[8] Mary Shaw and David Garlan. Software architecture:
perspectives on an emerging discipline. Prentice-Hall, Upper
Saddle River, 1996.

[9] Guus van der Stap and Ad Strack van Schijndel, Layered
Component Architecture. Cap Gemini internal, memorandum,
1998.

[10] Hans van Vliet, Software Engineering: principles and
practice. John Wiley & Sons Ltd., Chichester, 1993.

