

Towards a Broader View on Software Architecture Analysis of Flexibility

Nico Lassing, Daan Rijsenbrij and Hans van Vliet
Faculty of Sciences, Vrije Universiteit, Amsterdam

{nlassing, daan, hans}@cs.vu.nl

Abstract
Software architecture analysis helps us assess the

quality of a software system at an early stage. In this
paper we describe a case study of software architecture
analysis that we have performed to assess the flexibility of
a large administrative system. Our analysis was based on
scenarios, representing possible changes to the
requirements of the system and its environment. Assessing
the effect of these scenarios provides insight into the
flexibility of the system. One of the problems is to express
the effect of a scenario in such a way that it provides
insight into the complexity of the necessary changes. Part
of our research is directed at developing an instrument
for doing just that. This instrument is applied in the
analysis described in this paper.

1. Introduction

Recently, there has been a wide interest in the study of

software architecture. A system’s software architecture
captures early design decisions, which have a major
impact on the quality of the resulting system. It is very
hard, if not impossible, to change these decisions later on.
Therefore, it is essential that we judge the appropriateness
of these decisions at an early stage. Software architecture
analysis enables us to do so.

Currently, ideas about analyzing software architectures
are beginning to evolve (see [5] and [1]). A number of
authors have reported on methods for software
architecture analysis of flexibility, such as [7] and [3].
Both methods use scenarios to capture possible events in
the life of a system and evaluate the flexibility of the
system by evaluating the effect of these scenarios. Their
main difference is the way in which the effect of scenarios
is evaluated and expressed. SAAM evaluates the effect of
a scenario by investigating which architectural elements
are affected by that scenario. Bengtsson and Bosch also
predict the effort needed to implement the scenario by
estimating the size of these components and the extent to
which they are affected.

In the case study presented here, we used scenarios to
analyze the flexibility of MISOC2000, a large
administrative system developed by the Dept of Defense

Telematics Agency (in Dutch: Defensie Telematica
Organisatie or DTO) for the Dutch Dept of Defense
(DoD). The purpose of this case study was to gain insight
into the factors that influence the complexity of changes
for this class of information systems. We found that the
number of components affected and their respective size
are not the most important factors that influence the
complexity of changes for administrative systems; other
factors are more important. Based on our experiences, we
have defined a measurement instrument that includes
these factors.

The definition of software architecture we use in this
paper is based on the one given in [2]. They define the
software architecture of a program or computer system as
the structure or structures of the system, which comprise
software components, the externally visible properties of
those components, and the relationships among them. We
have decided to extend this definition because it only
focuses on the internals of a system. We have found that
for architectural analysis the external environment is just
as important. In our view, the description of the software
architecture should consist of two parts. One part should
focus on the environment of the system, which we will
call the ‘macro architecture’. The other part should cover
the internal structure of the system, and will be called the
‘micro architecture’.

The remainder of this paper is divided into three
sections. Section 2 introduces MISOC2000 and describes
its software architecture, section 3 contains the analysis of
the flexibility of MISOC2000 and our conclusions are
given in section 4.

2. Case study: MISOC20001

Our case study concerns the software architecture

analysis of a system called MISOC2000, which is
currently being developed by DTO. MISOC2000 will be
used by fifteen training centers of the various services of
the Dutch army for the registration of data concerning
their courses and students. These training centers are

1 MISOC is short for Management Information System for Training

Centers (in Dutch: Management InformatieSysteem voor de
OpleidingsCentra)

separate organizational units, responsible for their own
operating results. They are located throughout the
Netherlands and part of Germany and each of them
belongs to exactly one branch of military service. The
MISOC2000 project is funded by their coordinating
department and DTO is the main contractor.

This section describes the software architecture of the
MISOC2000 system. It is divided into two parts. The first
part, presented in section 2.1, covers the macro
architecture of MISOC2000, i.e. the position of
MISOC2000 in its environment. The second part,
presented in section 2.2, covers MISOC2000’s micro
architecture, i.e. its internal structure.

2.1. The macro architecture of MISOC2000

MISOC2000 will not be an isolated system, because it

has to be integrated with other systems that are already
used by the training centers. The macro architecture
describes these systems and their relationships to
MISOC2000. By making a distinction between systems
that are owned by the training centers and those that are
owned by others, we can distinguish changes that can be
made autonomously by the training centers from changes
for which coordination with other organizational units is
necessary.

We will start our description of the macro architecture
by focusing on the systems of a single training center.
This description applies to all training centers, because all
of them use the same set of systems. Each training center
has a number of systems with which MISOC2000 has to
be integrated. The relationships between MISOC2000 and
other systems can take various forms. Similar to [6] we
have identified three types of relationships, which are in
order of increasing integration: (1) data exchange through
file transfer, (2) access to persistent data and (3) call
relationship. However, more integration between systems
leads to stronger dependencies between systems and
stronger dependencies between systems make it harder to
change one of these systems. In the first situation, the
dependency between systems is limited to the structure of
the files they exchange. In the second situation, the
dependency between systems consists of the structure of
the persistent storage. In the third situation, the
dependency between the systems is extended to the
application logic. So, the degree of dependency between
systems determines their mutual flexibility.

In Figure 1, the systems of a single training center are
shown, as well as the type of relationship they have to
MISOC2000. We will now briefly describe the various
systems mentioned in this figure. The course development
system (GOOS) is used for developing new courses. To
do so, it uses information from MISOC2000, such as the
number of registrations for a course and the availability of
locations. After new courses have been developed with

GOOS, they are imported into MISOC2000. From then
on it is possible to register students for these courses. The
data exchanges between MISOC2000 and GOOS consist
of files being imported and exported. This means that
MISOC2000 and GOOS can be adapted independent of
each other, as long as the structure of the files they
exchange is unaffected.

The next system is the financial planning system
(KIO), which is used for calculation of the costs. KIO
feeds MISOC2000 with information concerning cost
centers and retrieves information from MISOC2000
concerning the organization, instructors, locations, and
resources. These data exchanges take the form of file
transfers. So, like GOOS, KIO is rather independent of
MISOC2000.

The management reporting system (MARS) is a
management information system that is used for
generating various management reports. This system is
implemented using a COTS report tool. This tool directly
accesses the MISOC2000 database to retrieve
information. As a result, MARS is independent of the
implementation of MISOC2000 and it will be unaffected
by changes to MISOC2000 that do not affect its database.

The systems we have mentioned so far are all owned
and maintained by the training centers, or their
coordinating department. The two remaining systems in
Figure 1, the P-module and the O-module, are owned and
maintained by a central department. In the evaluation in
section 3 we will assess how this notion of ownership
affects the flexibility of these systems.

The P-module is a part of the human resource (HR)
information system. The HR system stores information

Training center

P-module

file transfer

access to
persistent storage

call relationship

system

applications

persistent storage

MIS OC
2000

Course
development

system (GOOS)

Management
report system

(MARS)

Financial
planning system

(KIO)

MISOC2000
data

O-module

organizational
unit

Figure 1. Systems of a training center

about employees, such as name, rank and qualifications.
This information is maintained both at the central level
for the whole DoD, and at the local level for each unit. At
the local level, each unit uses an instance of the P-module
for managing the information of the employees of that
unit. Periodically, the central system feeds the P-module
of each unit with information concerning the employees
of that unit using file transfer. These downloads are one-
way only, so global updates to the human resource
information are only possible at the central HR system.
However, the P-module does provide facilities for
performing updates, but these changes are not carried
through to other units. This enables units to register
temporary staff.

In fact, the P-module plays two different roles, namely
as a stand-alone system for managing personnel
information and as a ‘service’ for other systems to access
personnel information. MISOC2000 uses the P-module in
the latter role, mostly to retrieve information about
instructors. When MISOC2000 invokes the P-module,
one of the applications of the P-module is started on the
user’s workstation and control is transferred to that
application. After the user has performed the necessary
actions, the application is closed and control is returned to
MISOC2000. Other systems use the P-module in similar
ways. The main drawback of this approach is that it
results in strong dependencies between the P-module and
these other systems. In section 3 we will touch on the
consequences of these dependencies.

We will be brief on the O-module and its central part,
because their structure is similar to the P-module and the
central HR system. The function of the O-module is to
provide access to information concerning the organization
and its resources. Just like the human resource
information, this information is stored at both the central
and the local level and the central mainframe performs
periodical downloads to local instances of the O-module.

So far, we have discussed the relationships of
MISOC2000 with systems within a training center.
However, MISOC2000 is also related to one system
outside the training centers, namely PICO (Planning and
Development System for Courses and Training). PICO
gathers the course information of all training centers and
enables their customers, i.e. all organizational units, to
enroll employees for these courses. Like MISOC2000,
PICO is owned by the coordinating organization of the
training centers. The structure of PICO and its
relationship with MISOC2000 is shown in Figure 2.

Several flows of information can be distinguished in
this figure, all of which are file transfers. The information
concerning the courses is transferred from the training
centers to a central server, the PICO server. The
customers of the training centers use a local system,
‘PICO customer’, to retrieve this information and enroll
their employees for these courses. Finally, these

enrollments are transferred from the PICO server to
MISOC2000 at the appropriate training center.

A number of the systems we have mentioned so far are
used at different locations. To make sure that these
systems operate correctly in the technical environment at
each location, the DoD has defined the LAN2000
standard. This standard sets the configuration of both
client and server machines, e.g. the hardware, the
operating system and the database management system.
Creating a uniform technical environment removes the
need to develop multiple versions of a system to run at
different locations, simplifying configuration
management. In the analysis in section 3 we touch on the
drawbacks of this type of standardization.

2.2. The micro architecture of MISOC2000

MISOC2000 is created with COOL:Gen, an enterprise

CASE tool developed by Sterling Software. This tool uses
models and code diagrams to specify the behavior of a
system, independent of its target technical environment.
Based on these models and code diagrams, COOL:Gen
can generate the source code and the database schemes of
a system for a number of technical environments
(compiler, operating system, transaction-processing
monitor and database management system). After that,
this source code is compiled to create executables for the
target environment. Finally, these executables are
installed in their target environment, along with a set of
run-time files specific for that environment. These run-
time files are used by all COOL:Gen generated systems
for things like communication and screen-handling.

In COOL:Gen the whole system is stored in one
model, but this model consists of seven submodels. The
choice of subsystems is driven by the processes of the
training centers: each subsystem supports a specific group
of users. The following subsystems are recognized:
1. Product: formulating course catalogs and production

Train ing
centers

Courses Enro llments

MIS OC
2000

Train ing
center

coordination
PICO server

Customers
PICO

customer

Courses Enro llments

Figure 2. MISOC2000 and PICO

plans for a training center
2. Sales: distribution of course catalogs and recording

agreements with customers
3. Student: registration of student information
4. Programming: creating short-term schedules
5. Logistics: management of the availability of locations

and items
6. Economics: exporting cost information to KIO and

importing information about cost centers from KIO
7. Personnel: an extension of the P-module to record

personnel information specific for training centers

These subsystems communicate through a shared
database. Figure 3 shows the subsystems, the information
they share and their communication with the systems in
the environment.

Courses (GOOS)

Courses,
planned courses

Cost
information

Student
information

Planned courses

Items,
locations

Shared data

Students
in classes

Competences,
availability

Course catalog,
student

information
(PICO)

Items (O-module)

Cost
information

(KIO)

Items (O-module)

Personnel
information
(P-module)

Product

Sales Student

Logistics

Programming Personnel

Economics

Classes

File transfer Call to external
program

Return value

MISOC2000

Figure 3. The subsystems of MISOC2000

There is also an eighth subsystem, called ‘General’.
Although its name suggests otherwise, this subsystem is
not aimed at supporting a specific group of users. Instead,
it is used for administrative purposes, like maintenance of
authorization and configuration data. Information
recorded by this subsystem is used by all other
subsystems. It was omitted to enhance readability.

Orthogonal to this division in subsystems,
MISOC2000 is also divided into three layers. The first
layer consists of a number of client executables, which are
installed on the users’ workstations. The second layer
consists of a number of server executables, which are
installed on an application server. The third layer consists
of the database tables that are placed on the database
management server. This layering spreads the required

processing over a number of machines.
A similar approach is used for other DoD systems that

were created with COOL:Gen, such as the P-module and
the O-module. Many people within the DoD use several
of these systems. As a result, many users’ workstations
contain the client executables of a number of systems,
which have to share the set of COOL:Gen run-time files.

MISOC2000 is protected from unauthorized use by an
authorization mechanism. The authorization strategy that
is employed is function-oriented, i.e. groups of users are
authorized to perform certain sets of functions. The
authorization mechanism consists of a number of
elements. The first element is the maintenance of the
authorization data. As mentioned before, this function is
performed by the subsystem ‘General’. The second
element is the storage of authorization data. This function
is performed by the MISOC2000 database server, which
has a separate database for authorization data. The next
element is the authentication client that logs users in to
and out of MISOC2000. It consists of a small application
created with COOL:Gen that is installed on each user’s
workstation, which registers a user with the database. This
authentication client is also used for other systems created
with COOL:Gen. The final element of the authorization
mechanism is the authorization of functions. To do so,
each function checks the authorization database to see
whether the current user is authorized to perform that
function. Figure 4 shows the relationships between the
various elements.

client
machine

database
server MISOC2000

authorization data

Auth.
client

MISOC2000
client

Subsys.
General

Figure 4. The elements of authorization

Although COOL:Gen is aimed to provide platform
independence, it does support the use of OCX-controls2,
which are only usable in a limited number of technical
environments. In MISOC2000, the subsystem
‘Programming’ contains such an OCX-control for
showing a timetable. The decision to use this component
was driven by the fact that it was available from an
external supplier and using it saves a lot of time during
development. As a consequence, the advantages of
COOL:Gen with respect to portability are not fully
exploited. An additional drawback is that the component
is owned by an external supplier, which means that the
DoD is dependent on this supplier for this component.

2 An OCX-control is software component that is specific for the

Microsoft Windows environment.

3. Analysis of flexibility

In our analysis we focus on the flexibility of

MISOC2000. We define flexibility as the ease with which
systems can be adapted to changes. These changes are not
limited to internal aspects of a system. We found that the
environment is an important source of changes as well.

The method we use for our analysis is based on the
Software Architecture Analysis Method or SAAM ([7]).
This method consists of three major steps:
1. Describe the software architecture in sufficient detail
2. Develop relevant scenarios
3. Evaluate the effect of scenarios

Although the steps are listed here as though they are
performed sequentially, they are not. The first two steps,
for instance, have to be performed in parallel, for two
reasons. First, the description of the software architecture
should cover the aspects mentioned in the scenarios.
Second, it is very hard to define scenarios when you are
not sufficiently familiar with the system and its software
architecture. So, the steps are not necessarily performed in
the above-mentioned order. Nevertheless, to enhance the
comprehensibility of our analysis we present them as
discrete, sequential steps.

The first step has already been discussed in detail in
section 2. Section 3.1 lists the scenarios we identified and
describes their effect on the system. In section 3.2 we
introduce the measurement instrument we have developed
for expressing the effect of scenarios and apply this
instrument to the scenarios of section 3.1. Section 3.3
contains an evaluation of the analysis.

3.1. Scenarios and their effect

The central steps in the analysis of software

architectures for flexibility are capturing potential
changes in scenarios and evaluating their effect. The
scenarios make flexibility tangible and evaluating their
impact demonstrates how well they are supported by the
software architecture. It is essential to find those changes
that are likely to happen in the life of the system. The
scenarios used in this analysis were established through
interviews we had with various stakeholders of the
system. These interviews revealed that adaptations to the
system are not only brought about by changes in the
requirements, but also by changes in its environment. So,
our list of scenarios contains both types of changes. For
each scenario we have indicated its most likely initiator.

The next step was to assess the effect of the scenarios.
To this end, we interviewed members of the MISOC2000
development team and stakeholders of some of the other
systems. The results are described below.

Scenario 1: What happens when a branch of military
service replaces Windows NT 4.0 by Windows 2000?

This situation could occur every time a new version of
an operating system is released. The situation that one
individual service changes its operating system is in fact
highly undesirable, because it would require that a
number of systems, including MISOC2000, be
regenerated and recompiled for this service only. This
leads to different versions of the same system, which
increases the complexity of configuration management
and jeopardizes the interoperability between services. The
LAN2000 standard is aimed at avoiding just that. An
organizational entity should only change its operating
system when the LAN2000 standard is changed. These
decisions are made for the entire DoD. As a result, the
individual organizational entities have limited control
over these decisions and once they have been made they
have to follow. So, in this situation flexibility is partly
sacrificed for reduced complexity and increased
interoperability.

Scenario 2: What happens when the DoD changes the
operating system in LAN2000 from Windows NT 4.0 to
Unix (for both workstations and servers)?

For MISOC2000 this means that it has to be
regenerated and compiled for this new platform. On the
server side, this should not be a very large problem,
because the server applications of MISOC2000 do not use
any platform-specific features. The MISOC2000-
applications on the client side, however, do use platform-
specific features. The subsystem ‘Programming’ uses an
OCX-control, which is not usable in a UNIX-
environment. This means that either the external supplier
has to supply a similar component for this platform or that
such a component has to be created. Although this
probably requires a lot of work, it is the only component
of MISOC2000 that is affected.

However, MISOC2000 does not exist in isolation. The
other systems in its environment have to be ported to the
new platform as well. For some of these systems this may
prove very hard, because they have to be reimplemented.
In addition to the effort that is needed to adapt the
individual systems, effort is also needed for coordinating
the various changes. This was already recognized by
Brooks back in the 1970s (see [4]). He claims that
developing and maintaining a system that is related to
other systems, costs three times as much as developing
and maintaining an isolated system. Although the factor
three may not be entirely correct, developing and adapting
integrated systems is inherently more complex. So, even
though portability seems to be taken care of for
MISOC2000, the dependencies with other systems make
that it is very hard to change the technical environment.

Scenario 3: What happens when a new version of
COOL:Gen is used for MISOC2000?

In section 2.2, we mentioned that each system

developed with COOL:Gen needs a set of run-time files
on every machine that contains executables of that
system. These run-time files are specific for a version of
COOL:Gen. So, when a new version of COOL:Gen is
used, these run-time files have to be upgraded as well.
However, if the run-time files are upgraded on the
workstations of the users of the training centers, the other
COOL:Gen created systems on these workstations, the
authorization client, the P-module and the O-module,
have to be migrated to this new version as well.
Otherwise, version conflicts arise. But if these systems
were only upgraded at the training centers, they would
exist in two versions: one for the training centers and one
for the rest of the DoD. We saw earlier that this is
regarded undesirable. Therefore, the authorization clients,
the P-module and the O-module of every unit of the DoD
have to be migrated to this new version of COOL:Gen,
including their run-time files. This means that all systems
created with COOL:Gen that share a machine with the
authorization client, the P-module or the O-module have
to be upgraded as well. Eventually, every system that was
created with COOL:Gen has to be upgraded. So, when
MISOC2000 uses a new version of COOL:Gen, this
implies that every system created with COOL:Gen should
be regenerated, recompiled, tested and deployed.

Scenario 4: What happens when the authorization
client is changed?

The authorization client is an independent application
created with COOL:Gen that is used to log users in to and
out of MISOC2000. When a user logs in to MISOC2000,
the authorization client registers this in the authorization
database. No direct communication takes place between
MISOC2000 and the authorization client: MISOC2000
just queries the database to see which user is logged in.
As a result, MISOC2000 is unaffected by changes to the
authorization client that do not affect its database.

Scenario 5: What happens when the user interface
style of the P-module is changed?

As mentioned in section 2.1, the user is confronted
with the user interface of the P-module when
MISOC2000 needs information from the P-module. So, a
change in the style of interaction of the P-module causes
inconsistencies in the interaction style of MISOC2000.
This matter could be resolved by adapting MISOC2000 to
this new style.

This situation actually occurred during the
development of MISOC2000. It appeared to be very
difficult to adapt the style of all its user interface
elements. To explore these difficulties, it is necessary to
explain how DTO handles user interface styles. DTO
propagates the use of a uniform interface style for all
systems, by making available a COOL:Gen template that
incorporates this style. Initially, MISOC2000 was also

based on this template. The problem that arose was that,
once a COOL:Gen project is created, its initial template
cannot be changed. This meant that in order to adapt the
user interface style of MISOC2000 each of its user
interface elements had to be adapted by hand. This was
considered not worth the extra effort, so now there is a
small variation in the user interface style of the P-module
and MISOC2000.

Scenario 6: What happens when the external supplier
changes the interface style of the timetable component?

This has no impact on MISOC2000 whatsoever,
because it is not compulsory to use the new version of the
component in MISOC2000. This is the main difference
between this timetable component and the P-module in
the previous scenario. MISOC2000 is always confronted
with the latest version of the P-module.

Scenario 7: What happens when PICO is used for
transferring course results to the P-module of the
organizational unit of a student?

At present, the course results of a student are
transferred to his or her organizational unit by hand,
where they are entered into the P-module. Because PICO
is already used for passing enrollments from a unit to a
training center, it could also be used for automatically
transferring the results back to the P-module of this unit.
In fact, PICO customer and PICO server are already
prepared to handle these transfers. Only MISOC2000 has
to be adapted so that it can automatically export these
results to PICO. In MISOC2000, the link to PICO is
centralized in the subsystem ‘Student’ that also maintains
the information concerning results. So, this is the only
subsystem that has to be adapted.

Scenario 8: What happens when the processes of the
training centers are changed?

We mentioned in section 2.2 that the processes of the
training centers drove the division of MISOC2000 in
subsystems. This division was chosen in such a way that
most tasks could be performed using a single subsystem.
To preserve this concept after the processes change, it is
necessary to modify the division in subsystems. So, this
scenario causes changes to the micro architecture.

Scenario 9: What happens when a number of services
have to cooperate in one training center?

At present, a training center always belongs to just one
service. This scenario does not change this situation. The
only thing that changes is that instructors and assets of
one service are allocated to a training center of another
service. This means that they have to be entered in the P-
module or O-module of this training center as local data.
So, MISOC2000 is unaffected by this scenario.

Scenario 10: What happens when training centers have
to share their assets (locations, vehicles, etc.)?

This scenario is similar to the previous one, except that
in this current scenario the training centers lose part of
their autonomy. To implement this scenario would require
that the instances of MISOC2000 at the various training
centers be connected. This would have an enormous
impact on the macro architecture of MISOC2000.
Alternatively, the matter could be solved outside the
system, by agreements between training centers about the
use of assets. The DoD has a strong preference for the
latter solution.

3.2. A measurement instrument for scenarios

One of the main problems in the software architecture

analysis of flexibility is to express the effect of a scenario
in a systematic way. SAAM is not very clear at this point.
Therefore, we have developed a measurement instrument
for doing so, which includes a number of measures that
determine the complexity of changes required for a
scenario. These measures were identified in consultation
with developers.

The first measure affecting the complexity of a
scenario is its impact, i.e. the magnitude of the required
adaptations. In [8] we used the following four levels to
express the impact of a scenario on a system:
1. Scenario has no impact
2. Scenario affects one component
3. Scenario affects several components
4. Scenario affects the software architecture

To be able to draw a distinction between the effect of a
scenario on a system and the effect on its environment,
we will make a distinction between the impact of a

3 1 = no impact, 2 = one component affected, 3 = several

components affected, 4 = architecture affected
4 1 = no version problems, 2 = presence of multiple versions is

undesirable, 3 = presence of multiple versions complicates configuration
management, 4 = presence of multiple versions creates conflicts

scenario at the macro architecture level and the impact at
the micro architecture level. At the macro architecture
level the components of level 2 and 3 represent systems
and at the micro architecture level they represent
components or subsystems. The impact of a scenario on
the system itself, MISOC2000 in this case, is expressed
only at the micro architecture level, not at the macro
architecture level.

The complexity of a scenario is also influenced by the
notion of ownership, because a scenario is more complex
when multiple stakeholders are involved. Not only
because of the additional coordination that is required
between these parties, but also because all stakeholders
have to be persuaded to implement the necessary changes.
Ultimately, this could mean that a scenario is not feasible.

An additional factor influencing the complexity of
changes is whether a scenario leads to the presence of
different versions of some architectural element. Different
versions of an architectural element may introduce a
number of difficulties. Eventually, this may result in
changes to architectural elements that were initially
unaffected by a scenario. We have distinguished four
levels of difficulties related to versions:
1. No problems with different versions
2. The presence of different versions is undesirable, but

not prohibitive
3. The presence of different versions creates difficulties

related to configuration management
4. The presence of different versions creates conflicts

So, our instrument includes three measures to express
the effect of a scenario. The first measure provides insight
into the required changes, the second measure indicates
whether coordination between stakeholders is required
and the third measure will help us identify any
unintentional side effects of scenarios. In Table 1 we use
this instrument to rate the effect of scenarios we found.

Table 1 leads us to the following observations.
Scenarios 1 and 2 are initiated outside the training centers,
but affect the micro architecture of MISOC2000. This
means that MISOC2000 has to follow these scenarios,

 Macro architecture level Micro architecture level
Initiator of scenario Impact level3 Multiple owners Version conflict4 Impact level3 Multiple owners Version conflict4

cenario 1 A service 3 + 3 1 - 3
cenario 2 DoD 3 + 4 2 + 1
cenario 3 Training centers 3 + 4 1 - 1
cenario 4 DoD 2 - 1 1 - 1
cenario 5 Central HR dept. 2 - 2 1 - 2
cenario 6 External supplier 1 - 1 1 + 1
cenario 7 Training centers 1 - 1 2 - 1
cenario 8 Training centers 1 - 1 4 - 1
cenario 9 Training centers 1 - 1 1 - 1
cenario 10 Training centers 1 - 1 1 - 1

Table 1. Results of the scenarios

although they may not be immediately beneficial to the
training centers. Scenario 3 represents the reverse
situation: it is initiated by a training center but affects
architectural elements of other owners as well. As a
result, this scenario can only be performed in consultation
with others. Scenario 4 is an uncomplicated scenario that
affects just one system. Scenario 5 also affects just one
system, but it introduces a version conflict at the same
time. This conflict is not so serious that other systems
have to be adapted as well. As a result, some
inconsistencies will remain. We can be short on scenarios
6, 9 and 10, because they do not affect MISOC2000 at all.
Scenarios 7 and 8, on the other hand, do affect
MISOC2000, but their impact is limited to the micro
architecture level. This does not mean that they are easier
to perform, but in any case they can be performed
autonomously by the training centers.

3.3. Evaluation of the analysis

The principal shortcoming of our approach is that the

factors included in the measurement instrument are not
entirely comparable. Another shortcoming, which is
common for all scenario-based methods, is that you often
do not know whether the scenarios found really represent
those changes that are likely to happen in the life of a
system. Consequently, the results should be interpreted
with care. We feel that the instrument is most useful as an
aid in the analysis of flexibility.

4. Conclusion

In this paper we have presented a case study of

software architecture analysis. The purpose of this case
study was to explore the possibilities and difficulties of
architecture analysis of flexibility for administrative
systems. To this end, we have used an existing technique,
SAAM, to analyze the flexibility of MISOC2000, a large
administrative system that is built for the Dutch Dept of
Defense. This has taught us a number of things. Firstly,
we have found that the environment plays an important
role in the analysis of flexibility. The environment is not
only a source for changes, but it can also complicate the
implementation of changes. Therefore, we found it useful
to view the software architecture of a system at two
levels: the internal structure of the system (the ‘micro
architecture’) and the role of the system in its
environment (the ‘macro architecture’). Secondly, we
have found that ownership is a matter of concern for
flexibility. Scenarios that affect architectural elements of
different owners are more complicated to perform than
those that affect architectural elements of a single owner.
Thirdly, we have experienced that the presence of
multiple versions may extend the impact of changes.

Based on our findings, we have defined a measurement

instrument to express the effect of scenarios. This
instrument draws a distinction between the effect of a
scenario on the micro architecture and its effect on the
macro architecture. For both the micro architecture and
the macro architecture, the instrument indicates the
impact of a scenario, whether multiple owners are
involved and whether it leads to version conflicts.
Applying this instrument helps us gain insight into the
complexity of scenarios. The principal shortcoming of the
instrument is that it includes a number of measures that
are not fully comparable. In further research we will use
this instrument again to see whether all aspects relevant to
the complexity of changes are included.

Acknowledgements

This research is mainly financed by Cap Gemini

Netherlands. We thank DTO and the Dutch Dept of
Defense for their cooperation. We are especially grateful
to Reinoud Sicking, Gabby Niemantsverdriet and Peter
Braat of DTO and Hans van Grinsven of the Dutch Army
for their time and their comments.

References

[1] G. Abowd, L. Bass, P. Clements, R. Kazman, L. Northrop,
A. Zaremski Recommended Best Industrial Practice for
Software Architecture Evaluation. 1997. CMU/SEI-96-TR-025.

[2] L. Bass, P. Clement and R. Kazman . Software Architecture
in Practice. 1998. Addison Wesley, Reading, USA.

[3] P.O. Bengtsson and J. Bosch. Architecture Level Prediction
of Software Maintenance. Proceedings of the International
Conference on Software Engineering ’99. 1999.

[4] F.P. Brooks . The Mythical Man-Month - Essays on
Software Engineering (20th Anniversary Edition). Addison
Wesley, Reading, USA. 1995.

[5] J.C. Dueñas, W.L. de Olivieira and J.A. de la Puenta. A
Software Architecture Evaluation Model. Proceedings of the
Second International ESPRIT Workshop. Springer Verlag. 1998.

[6] V. Gruhn and U. Wellen. Integration of Heterogenous
Software Architectures - An Experience Report. In: P. Donohoe
(ed.). Software architecture: Proceedings of the First Working
IFIP Conference on Software Architecture. Kluwer Academic
Publishers, Dordrecht, The Netherlands. 1999.

[7] R. Kazman, G. Abowd, L. Bass and P. Clements. Scenario-
Based Analysis of Software Architecture. IEEE Software, 13
(6). 1996. pp 47-56.

[8] N.H. Lassing, D.B.B. Rijsenbrij and J.C. van Vliet.
Flexibility of the ComBAD architecture. In: P. Donohoe (ed.).
Software architecture: Proceedings of the First Working IFIP
Conference on Software Architecture. Kluwer Academic
Publishers, Dordrecht, The Netherlands. 1999.

